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Abstract

Vector Fitting (VF) is an iterative rational macromodeling
technique [1] that became quite popular over the last years, due
to its simplicity and availability. Although the VF method pro-
vides accurate broadband macromodels, the numerical stability
of the algorithm is not always optimal. In this paper, the Or-
thonormal Vector Fitting (OVF) algorithm is introduced, which
reduces the numerical sensitivity of the model parameterization
to the choice of starting poles significantly, and limits the num-
ber of required iterations.

Introduction

Compact rational macromodels, based on measurements or
simulations, are very important for efficient time domain and
frequency domain simulation of high-speed interconnection
structures.

Traditionally, a Vandermonde-like system of equations needs
to be sclved, in order to determine the system parameters of the
rational macromodel. This approach, based on power series is
quite straightforward, but its accuracy is limited. The use of
alternative polynomial bases, e.g. orthogenal Chebyshev poly-
nomials of the first kind {4], is well-described in literature, but
this approach doesn’t resolve all numerical issues.

Quite recently in 1999, an iterative least-squares ap-
proach (called Vector Fitting) {1], was proposed by Gus-
tavsen and Semlyen, which is essentiaily a reformulation of the
Sanathanan-Koemer iteration [2] with rarional basis functions.
A detailed analysis and a more general framework of the iter-
ative behaviour and convergence properties of the algorithm is
discussed in {3]. This paper, will focus on improvements of
the numerical stability and robustness of the VF algorithm. It
will be shown that several numerical aspects of Vector Fitting
can be improved when orthonormal rational functions are used.
This reduces the numerical sensitivity of the model parameteri-
zation to the choice of the (starting) poles significantly, and can
provide accurate macromodels in fewer iterations.

1 Rational approximation of data
A Linear Time-Invariant (LFI) system can be characterized

in the frequency domain by fitting the spectral data to a rational
macromode! in a least squares sense.
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Unfortunately the normal equations of this least-squares prob-
lem are often ill-conditioned, especially for highly dynamic sys-
tems which cover a large frequency range or require a lot of
poles.

A solution to this problem was proposed by Adcock and Pol-
ter in 1985 [4]. Instead of expanding the rational basis func-
tions in the power serics basis, the equations are much bet-
ter conditioned when the numerator and denominator are ex-
panded in a basis of orthogonal Chebyshev polynomials of the
first kind. The large variations of the Chebyshev polynomials
make it possible to downsize the effects of the ill-conditioned
matrix, by summing the orthogonal Chebyshev polynomials,
instead of summing the power series, which show little varia-
tion with increase in order. Unfortunately, although the param-
eterization becomes much less sensitive to rounding errors, it is
much harder to determine the poles and the zeros of the rational
model in an accurate way.

However, one could also use rational basis functions, say
(), instead of pelynomial bases.
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In order to obtain a proper rational function R(s), the rational
basis functions must span the space £, which is defined as

Lo = span{pe(s), ... or(s}} 4)
P
= {in—g:pnenna Wn(s):H(S+ap)} (5)

where I1,, denotes the space of pelynomials of degree equal to
or less than n. —a, are chosen to be the poles of the rational
basis functions, and y(s) is assumed to be a constant e.g. 1.
Since R(s) represents a ratio of two rational functions (3), of
which the poles of both the numerator and denominator expres-
sion contain the (same) roots of 7, (s), they are cancelled out
when the formulation is simplified and a representation as in (1)
is obtained. This approach has several numerical advantages as
will be shown further on. First, let’s focus on the identification
of the system variables. The major difficulty with least-squares
rational approximation is that the problem is still non-linear in
terms of NV, and [34. One option, which is commonplace in the
engineering world, is to linearize the problem by multiplying
left hand side and right hand side of (3) with the denominator
expression. Hence, the following set of equations is obtained
(Do =1}

N D
D Nanls) — Ris) (Z de(S)) =R(s) (6
d=1

n=0

SPI 2005



Note that this system of equations (evaluated at all discrete
frequencies s) is no longer Vandermonde-like if the o(s) are ra-
tional, In fact, when these basis functions are chosen carefully,
the model parameterization is significantly better conditioned.
This will become clear when we compare this “linearized least-
squares” formulation to the Vector Fitting technique in the next
paragraph.

2 Vector Fitting technique

The Vector Fitting technique approximates the frequency re-
sponse with a rational pole-residue model R(s).
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R(s) approximates the simulated data samples at the discrete
complex frequencies s. —ap and ¢, are the poles and residues
respectively, ¥p = 1, ..., P and ¢g is a constant. The “weighted”
data is approximated by a rational function R{s) based on an
initial set of starting poles —d,

P
s _ P
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This rational function approximates equation (7) multiplied
by an unknown rational “weighting” function o(s). Since o(s)
is also rational, it can be represented in pole-residue form,
which leads to the following augmented problem

[ a(s)R(s) } _ [ oo 7 +0 ]
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The augmented problem can be linearized in terms of the un-
knowns cp,d, b and &, by multiplying the second tine of the
vector equation with R{s).
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Hence, the following set of linear equations is obtained
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Remark that this form reduces exactly to (6)
P P
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when the ,(s) are chosen to be the basis functions of the
partial fraction expansion of a rational function.

wo(s) = 1,p(s) = (14)
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Once the unknown parameters are estimated, R(s) can easily

be obtained as -
Zp:() Cp‘:o'p(s)
ZE:U Epop(s)

Similarly, this ratio of rational functions with common de-
nominator reduces after simplification to the classical pole-
residue form (7) or the ratio of polynomials (3). The main con-
clusion of this paragraph is that the so-called “pole identifica-
tion” of Vector Fitting reduces exactly to an iterative version of
the “linearized least squares” formulation in the previous para-
graph.

Note that the basis functions, chosen in the Vector Fitting
technique, are the classical partial fraction expansion of a ra-
tional model. These basis functions are mainly responsible for
the conditioning of the Vector Fitting technique, since they oc-
cur directly in the equations that need to be solved. In the next
paragraph, it will be shown that alternative basis functions can
be used as well.

R(s) = (13)

3 The use of alternative basis functions

Instead of using the partial fractions as rational basis func-
tions, it will be shown that orthonormal rational basis functions
can lead to significant improvements in numerical condition-
ing [5]. A straightforward way to calculate an orthonormal ba-
sis, is to apply a Gram-Schmidt procedure on the partial frac-
tions [6][7]. Hence, orthonormal raticnal functions ¢,(s) are
obtained, which are in fact linear combinations of the partial
fractions ¢, (s), of the form

20 1
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forp = . P and @p(s) an arbitrary polynomial of order
p— L.
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The inner product is defined as
(Bi(s), s / 8u(5)83(s) (18

As an example, consider the construction of the first function

$1(s).

1
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To normalize ¢ (3), @1(s) = v, must equal & +/2Re(aq),

where £ is an arbitrary unimodular complex number. ¢ (s) is
then obtained as

$1(s) = 2Rela) (22)
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Now consider the construction of the second function ¢a(s).
First of all, ¢2(s) must be orthogonal to ¢1(s)

1
() a(s)) = 5= [ s =0 @
iR
which implies that ¢4(s) must vanish for s = —a;. There-

fore Qo(s) = v2(s — a}). This constant -y, is determined by
imposing the normalization condition

{$a(s), da(s))

271 f (s+a1){s+ az) (=5 + a})(~s + a})
i®
2 2
_ bel* g, Il @s)
2w J {(s+a2)(—s+a}) az + aj
iR ,

Clearly, it follows that 72 = x+/2Re(as), where 2 is an
arbitrary unimodular complex number. 8o, ¢2(s) is then given

by
s—of
{s +a1)(s + a3}

Similarly continuing this approach, the general polynomials
are obtained

¢32(S) = Ko 2§R6(CL2) (26)
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The calcuiation of this basis is not new, but is given here for
the sake of completeness and ease of understanding. 1In fact,
orthogonal rational functions have a long history in mathemat-
ics and engineering. This basis originates from the discrete-
time Takenaka-Malmquist basis [8]-[9], originally developped
in 1925, and has later been transformed to the continuous time
domain. It is a generalization of the Laguerre basis [10], where
ail poles {—a,} are the same real number, and the Kautz bases
[11] where all poles {—a,, —@p41} are the same complex con-
Jjugate pair with —a; = —ap+1.

For the macromodeling of LTI systems, the basis functions
must have real coefficients, hence a linear combination of ¢, (s)
and ¢; 1 (s) is formed

s+ a;

adi(s) + fpiy1(s)
_ il 8 - Cl; &(S + ai+1) +ﬁ(3 — a':) (28)
Frsta (8 -+ ag)(s+ a1}
_ g a; \ s(a+ 8) + (aaip1 — Bal) (29)
ks a {(s+a;)(s + ajr1)

which can be made real-valued if ¢;+) = a? (or if both a;
and a; are real). This way, two orthonormal functions of the
following form are obtained
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with real v;, ¥i+1, % and y. To impose the orthogonality,
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x and y are set to be /@@, and —,/8;G;41 respectively.
Similarly, v; and ;4 are set to \/a; + a;11. Note that this
choice is not unique, and that other possibilities exist.

Implementing these orthonormal rational basis functions in
VF (see Section II and IIT) leads to OVFE. The OVF technique
makes the model parameterization significantly better condi-
tioned, especially if the poles are real, or the magnitude of the
real part of the complex poles is non-negligible. Unstable poles
can either be flipped into the left half plane or deleted in each it-
eration. Passivity can be enforced as post-processing technique
[1311141(13].

4 Example

The reflection coefficient S1; of a Quarter Wavelength Fil-
ter (QWVL) is modeled over the frequency range of interest [1
GHz - 12 GHz), based on a set of 32 equidistant support sam-
ples. The initial poles are chosen as complex conjugate pairs
(imaginary parts equidistantly spread over the frequency range
of interest), with a fixed real part. Both techniques (VF and
OVF) are used to {it the rational data using the same set of initial
poles, and are allowed one single iteration. Tabie | shows the
condition number of both techniques (ratio between largest and
smallest singular value) when the real part of the poles varies
from -1 to -5. Clearly, the new technique is significantly better
conditioned when the distance between the poles and the imag-
inary axis increases. Fig. 1 shows both rational fits, and their
corresponding error when the real part is set to -5. Fig, 2 shows
the corresponding singular values of the *“pole identification”.
Due to numerical problems, VF was unable to provide accurate
results in only ! iteration. Using OVF, on the other hand, nu-
merical problems are avoided and the accuracy is almost twice
as good. In general, the best results for both techniques are
obtained when the initial poles are chosen as described in [1].

5 Conclusion

In this paper, the Vector Fitting technique is modified such
that orthonormal rational functions are used during the fitting
process. Several examples show that this approach improves the
numerical conditioning of the pole-identification significantly.
The Orthonormal Vector Fitting (OVF) technique can provide
accurate results when the starting poles are not chosen opti-
maily, often in fewer iterations.

SP12005



aB(s11)

] 7 ;
Frequency (GHz}

L
s

dBiSerr)

Singular Values {Log scale)

Figure 1: Left : Magnitude S;; of QWVL using VF (dashed)
and OVF (ful}). Right : Accuracy of the fit

Re(—a,) || CondNr. VF | Cond.Nr. OVF
-5 8.5856 x 1017 | 4.2810 x 10T
4 54016 x 1016 | 23412 x 1017
-3 1.9729 x 101 | 1.0428 x 107
2 3.6305 x 1017 | 5.6707 x 107
-1 46070 x 108 | 4.9655 x 107

Table 1: Conditioning vs

. pole location.
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