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ABSTRACT
Accurate simulation and modeling of complex multi-port
LTI systems can be computationally very expensive and
resource-demanding. Adaptive system identification tech-
niques, that combine adaptive sampling and modeling al-
gorithms, can be used to minimize the number of costly
data samples, and to build accurate broadband models in a
limited amount of time. This paper gives a survey of sev-
eral recent advances in the world of deterministic system
identification, based on sparse and costly data.
KEY WORDS
Adaptive techniques, System Identification, Rational Ap-
proximation.

1 Introduction

Linear Time Invariant (LTI) systems, such as electronic de-
vices, are often characterized in the frequency-domain us-
ing rational functions. Efficient domain-specific simulators
are available to model the complex system behaviour at dis-
crete frequencies, often at a high computational cost. Mul-
tiple costly simulations or virtual measurements must be
performed, to characterize a system over a broad frequency
range. Adaptive system identification techniques, that com-
bine adaptive sampling and adaptive modeling algorithms,
can be used to reduce the computational cost and to im-
prove the model accuracy [1]. This approach allows the
automatical selection of an appropriate model complexity
and sample distribution. It avoids overmodeling and under-
modeling, as well as oversampling and undersampling. No
prior knowledge of the system is assumed.

2 Rational Modeling

A rational analytic model R(s) is defined as a quotient of
two polynomials N(s) and D(s).

R(s) =
N(s)
D(s)

=
∑N

n=0 Nnsn

∑D
d=0 Ddsd

s = j2πf (1)

where N and D represent the order of numerator and de-
nominator respectively, and Nn and Dd the polynomial co-
efficients. The rational function provides an approxima-

tion of the spectral response of the system over the interval
[fmin,fmax]. Since there are N + D + 1 unknown coef-
ficients (D0 can be chosen arbitrarily, e.g. D0 = 1), a set
of K + 1 = N + D + 1 samples (sk, H(sk)) are required
to completely determine R(s). R(s) is then a curve pass-
ing through the values H(sk) at the complex frequencies
sk for k = 0, 1, ..., K . We will assume that such a ratio-
nal function exists, and that it has no unattainable points.
To calculate the coefficients of the model, several fitting
techniques were presented in the past, each having it’s own
strengths and weaknesses [2].

For ease of understanding, the Rational Linear Least
Squares (RLLS) technique is used to parameterize the
model, however the ideas presented here are general
enough to be applied to several other least-squares fitting
techniques as well.

The identification problem is linearized by multiply-
ing left hand side and right hand side of equation (1) with
the denominator polynomial, and equating R(s) to H(s) for
all frequencies sk.

(
D∑

d=0

Dds
d

)

H(s) =
N∑

n=0

Nnsn (2)

At a given frequency point, we get (D0=1)

Akx = bk (3)

where

Ak =
[

1 ... sN
k −skH(sk) ... −sD

k H(sk)
]

(4)
x =

[
N0 ... NN D1 ... Dd

]T
(5)

bk = [H(sk)] (6)

A direct solution with real coefficients can be found, by
writing out (3) for all frequencies sk, and solving the fol-
lowing set of linear equations

[ �(A)
�(A)

]

x =
[ �(b)

�(b)

]

(7)

This approach -combined with an appropriate frequency
scaling- can be used to build rational models. However,
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systems which are modeled over a very broad frequency
range, and highly dynamic systems can’t be modeled with
sufficient accuracy, because of numerical problems. The
Vandermonde-structure of A makes the system severely
ill-conditioned. To resolve the numerical issues, rational
splines can be used. Instead of splitting the frequency range
of interest in an ad hoc number of subranges, and model
them all separately, adaptive techniques can be used during
the modeling process to determine an optimal knot loca-
tion, based on the numerical conditioning of the problem
[3].

3 Adaptive Sampling Algorithm

The flowchart of the adaptive algorithm is shown in Figure
1. It consists of an adaptive modeling loop, and an adaptive
sample selection loop [4].

Initialisation

Get initial samples

Build rational models

Check accuracy

Reflective exploration
Compare fits, check physics

Output

Adaptive Modeling
Loop (increase order)

Adaptive Sampling
Loop (add samples)

Figure 1. Flowchart of the Adaptive Sampling and Model-
ing Algorithm

The goal is to minimize the error of the fitting model
according to the following error criterium

dB(|R(jω) − H(jω)|) < threshold (8)

The algorithm starts with 4 samples equidistantly
spaced over a certain frequency range of interest. Depend-
ing on the number of available data samples, multiple ratio-
nal models are built with different order of numerator and
denominator, exploiting all degrees of freedom. All ratio-
nal fitting models are evaluated in the data points, and com-
pared against one another. If the error between the model,
evaluated in the selected sample points and the simulated
data samples exceeds a certain threshold, the model is re-
jected, and the model’s complexity is increased. All mod-
els with different order of numerator and denominator are
ranked, and the 2 best models (i.e. with lowest overall er-
ror) are retained. The difference between these 2 models is
called the estimated fitting error, and new samples should
be chosen in such way, that the maximum estimated fitting
error is minimized.

Note that the estimated fitting error is always an esti-
mation of the real error, as this would only be known after
performing a lot of computationally expensive verification

simulations. Although the estimated fitting error provides a
good measure to determine the frequency where the uncer-
tainty of the model is the largest, it can sometimes cause the
algorithm to converge prematurely. A good way to increase
the reliability of the method, is to combine this estimated
fitting error with a heuristic engine. Each time new mod-
els are generated, the algorithm checks multiple heuristic
rules, and terminates when they are all satisfied.

Such rules, called reflective functions [5], compare

• correspondance of the phase

• correspondance of the magnitude

• correspondance of the Euclidean distance in the com-
plex plane

between

• fitting model and simulated data samples

• fitting models, based on an overdetermined set of
equations (approximants)

• fitting models, calculated when all interpolation con-
ditions are satisfied (interpolants)

• fitting models, based on a different set of support sam-
ples

• fitting models, based on a subset of selected support
samples

• fitting models, based on neighbouring and overlap-
ping frequency ranges

while detecting

• passivity violations

• other unphysical effects

The major disadvantage of the technique is that the
reliability of convergence-detection is highly dependent on
the set of rules, and the appropriate choice of thresholds. In
[6], an alternative strategy was introduced, which is based
on the “survival-of-the-fittest” principle of genetic algo-
rithms. An explicit convergence function was established.
However if the rational models require a large number of
poles, the convergence function becomes unreliable, and
the algorithm converges prematurely. To resolve these is-
sues, the technology was refined and more robust fitting
techniques were applied. Also, the method was extended
to multi-port systems [7].

4 Frequency Derivatives

In some cases, it’s possible to obtain tth order frequency
derivatives (sk, H(t)(sk)) from the simulator. Frequency
derivatives are scaled moments (coefficients of the Taylor
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H(t)(sk)
D∑

d=0

Ddsk
d =

N∑

n=t

Nnsk
n−t n!

(n − t)!
−

t∑

m=1

D∑

d=m

(
t
m

)

H(t−m)(sk)Ddsk
d−m d!

(d − m)!
(9)

series at a given expansion point), which can often be sim-
ulated at a significantly lower computational cost than data
samples. Taking them into account can significantly reduce
the overall simulation cost, since they provide additional
information to the modeling process. Some Finite Element
Method (FEM) simulators can take advantage of this prop-
erty.

To solve the identification problem, it is desired to
satisfy R(t)(sk) = H(t)(sk) for all k = 0, 1, ..., K and t =
0, 1, ..., T [8]. Again, we will assume that such a rational
function exists, and that it has no unattainable points.

When frequency derivatives of the data are available
at the discrete frequencies sk, (2) can be generalized by tak-
ing them into account. The coefficients Nn and Dd of the
rational fitting model now satisfy equation (9). All deriva-
tives are relative to s. The set of equations at all frequencies
sk and for all derivatives t, can be written in a similar ma-
trix form as equation (7).

5 Example

The reflection coefficients S11 of a 2-port Coplanar Waveg-
uide (CPW) are modeled with the adaptive sampling tech-
nique over the frequency range [0.1 GHz - 50 GHz].
All data samples are simulated with the planar full-wave
electro-magnetic simulator Agilent EEsof Momentum [9].
The desired model accuracy of the S-parameters is -60dB
or better, which corresponds to a maximal error on the mag-
nitude of 0.001.

Figure 2 a-d shows the consecutive steps of the algo-
rithm. The component is modeled using the default RLLS,
i.e. without making use of frequency derivatives. The al-
gorithm initially starts with 4 samples, equidistantly spaced
over the frequency range of interest, and builds several in-
terpolation models. The ”best” model is shown as a dashed
line. In each iteration of the algorithm, new samples are se-
lected at frequencies where the estimated error (the differ-
ence between 2 rational approximants, based on the same
set of support samples) is maximal. These new sample lo-
cations are marked with an arrow. Based on the extra data
points, new rational models are built and evaluated, and the
estimated error function is updated. The iterative process
is repeated until the error is below a predefined accuracy
threshold. In this example, 7 support samples are auto-
matically selected, to obtain the required precision. The
real error (difference between the model and very densely
selected verification data), which is also shown in the fig-
ures, is usually not known during the modeling process. In
this example, it is given only for illustration to the reader.
Note that there is often a strong correlation between the es-
timated error and real error.
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a. 4 samples selected
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b. 5 samples selected
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c. 6 samples selected
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d. 7 samples selected

Figure 2. Adaptive sampling and modeling of CPW. Mag-
nitude of best rational model (dashed line) and reference
data (full line) shown on left axis. Estimated error (dash-
dotted line) and real error (dotted line) shown on the right
axis. No frequency derivatives are used.

In Figure 3 a, the first frequency derivatives are also
used in the modeling process. This additional information
is exploited by the algorithm, and now it only needs 4 sam-
ples (+ first order derivatives) to find an accurate model.

6 Conclusions

Adaptive frequency sampling and modeling algorithms are
particularly useful when the computational cost of simulat-
ing data samples is very high. Adaptively built models have
a much higher accuracy at a much lower computational cost
than traditional approaches based on equidistant sampling
and linear interpolation. When frequency derivatives of the
data are used in the modeling process, the total simulation
cost can be reduced even further.
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