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Abstract— A new adaptive technique is presented for for mixed circuit and electromagnetic (EM) problems
building accurate and stable Partial Element Equivalent as it provides a circuit interpretation of the electric
Circuit (PEEC) models over a wide frequency range. Ra- field integral equation (EFIE). Thus, it is becoming
tional r_noo_lels are generated for i_m_pedances corr_esponding more and more popular among EMC engineers for its
to partial mductance_s and coefficients of p_otgntlal over a capability to handle complex problems involving EM
frequency range of interest, based on a limited number and circuits problems. Like other TDIE techniques it

of samples. Delay extraction is applied in order to keep i o i
the order of the rational models as low as possible. The M&y suffer from time domain instabilities. In the recent

adaptive algorithm doesn’t require any a-priori knowledge Past many authors have worked on solving the problem
of the dynamics of the system to select an appropriate Of instability separately from the issue of accuracy.
sample distribution and an appropriate model complexity. In the framework of the PEEC it is clear that they
cannot be separate. In [5] it is shown that the accuracy
in the computation of partial elements, namely partial
inductances and coefficients of potential, at very high
Transient analysis of electromagnetic compatibilitfrequency, may be cause of instabilities; in that work
(EMC) problems can be carried out using either integral macromodel is proposed to ensure accuracy over a
or differential equation (IE or DE) based methods. Witlvide frequency range, thus leading to better stability
the increasing need to analyze wide-band, time-varyipgoperties of the overall time domain model. In [6] an
and non linear problems, a robust time-domain solutiamproved formulation of the PEEC method is presented
technique becomes increasingly urgent. Time domaimat is based on a delay extraction techniqgue and a
integral equation (TDIE) based methods have a numbational modeling of impedances corresponding to par-
of advantages over other techniques: 1) they require onilgi elements describing the electric and magnetic field
the discretization of conductors and dielectrics; 2) asuplings; the generated macromodels are accurate over
time domain technique they return broadband informa-wide frequency range and, at the same time, allow to
tion in a single run and 3) they allow an easy treatmeimhprove the stability of the resulting.p, P, R, 7)PEEC
of time-varying and non linear problems. The maimodel. The main issue in applying the above mentioned
drawback of TDIE methods is related to the issue of tha@chnique is the need to sample the partial elements
instabilities. Over the past few years the computationial the frequency domain before macromodeling can
efficiency of marching-on-in-time (MOT) schemes fobe applied. Frequency domain computation of partial
solving TDIEs has been significantly improved by thelements can be time consuming when the problem at
use of fast solution schemes such as the plane-wédnand is electrically large. In this work we present an
time domain ad hierarchical fast Fourier transform (FFBdaptive frequency sampling algorithm (AFS) for fast
methods [1], [2]. Nonetheless the stability is still an opesind accurate PEEC modeling. Basically, a preliminary
issue. delay extraction is applied, and, secondly rational models
Among the integral equation based technique tlaee generated by using adaptive frequency sampling.
Partial Element Equivalent Circuit [3], [4] is well suitedThe order of rational models is kept low by the delay

I. INTRODUCTION
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extraction technique. The examples presented confi(@) may be significantly wrong for electrically large
the efficiency of the proposed algorithm in ensuringtructures because of the effect of dispersion which
accuracy and in improving the stability properties of thstill affects the delayless part. It results into a poor
PEEC models at a reduced computational cost. modeling in the active flreq < fmae) frequency range.
Furthermore, approximation (2) surely is not accurate
in the extended flua: < freq < 20 X fiqz) frequency
As stated in the previous Section, accuracy and stalimge, which significantly impacts the stability properties
ity of integral equation based methods are not separgtethe overall PEEC model [8]. Thus, a better and
issues. In the PEEC framework Stablllty is Strictly relateﬁﬁore accurate model is required in both the active and
to the accuracy of partial elements computation. Thusxtended ranges.
in the presel’lt Section, fIrStIy we review the pal’tial ele- As previous|y stated the time de|ay for the electro-
ments, partial inductances and coefficients of potentighagnetic field to propagate from cell to cell m can
describing the magnetic field and electric field couplingge approximated as’, = R/c, whereR is the center
to center distance. This task allows to write the complex

- . impedanceZy, ., (s) as
The magnetic field coupling between volume cells ’

m and n is described in terms of the complex partial Z1mn (8) = 8Lpmn (8) = Z& 0
inductance

Il. FREQUENCY DEPENDENT PARTIAL ELEMENTS

A. Partial inductances

(s)e ™ (3)

p RIS where the delayless impedancez{, = =
Lpmn () = m/ / ﬁdvmdvn SLp mn () esTnn is still frequency dependent and
mn Jy,, Jv, m = Tn @ takes dispersive phenomena into account at very high
wherec, is the free space speed of light,, anda,, the frequencies. The branch voltage mduced on the volume
cross section of volume celis andn. In time domain Cell 7 due to the current flowing in the volume cell

PEEC modeling it is common practice to assume a cenf8RdS

to center approximation for the exponential term which Vi §) = zdl O Ir o (s)e—5Thn 4
can be taken out of the integral yielding barn (8) = L () T (5) )
Typically the computation of its time domain counterpart
Lp,mn (S) = e_ST};m Lf)fmn (2) yp y p p

can be performed by

where 7L = R/cy is the center to center fly-time a) standard convolution techniques;
between cellsm and n, R is the center to center b) recursive convolution techniques via rational
distance between the cells. The standard delay extraction approximation ofZ¢!  (s);

Lmn

implies reduced, and thus acceptable, loss of accurggyine following the circuit synthesis o£% (s) is

. Lmn
for electrically small structures but may cause largg, formed along with its rational approximation yielding

errors in the case of electrically large objects whose

dimensions exceed,,;,, corresponding to the maximum Ny Res”
. : : L dl L L €Sk
frequency of interest. The direct rational approximation Zlmn () = dpp +seq, + Z s—pr
of partial inductances and coefficients of potential over k=1 k
a broad frquency ba_lnd is a dif_ﬁcult task becaus_e of Ny Res$ %z
the exponential term into (2). It firstly causes the time + Z s—pt s (5)
k k

delay of the electromagnetic field to propagate from k=1
the source to the observation point which results in®, Coefficients of potential

fas.t vanatlons_ in_phase; ;ec_ondly the dlgper5|on [7] The electric field coupling is described by complex
which results into slow variations in magnitude. Such

kind of problem is usually mitigated by using dela)fcr?:frf];clfun;locfoic;ftiiirg:il'ofggfe'ﬂigrgstwo cells, andn

extraction. In the PEEC framework all the electric as

well as magnetic field couplings are established in air 1 e~ 8ITm—Txl/co
since dielectric polarization currents are modeled lgcall P (s) = AneSmSn Js,, Js, |rm — Tal @5mdSn
by excess capacitances. This fact allows an easy and (6)

reasonable estimate of the delay as the center to centbereS,, and S,, represent the area of surface celis
time of flight, as in (2). Nevertheless the approximatioand n. The impedance describing mutual electric field
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coupling is sufficiently sampled, especially where the impedances
Pmn S . .
Z¢mn (8) = S( ) (7) are changing more rapidly.

In the most common situations, one can resort to
The center to center delay can be extracted thySyery dense uniform sample distribution. Although

providing this method can be useful when the data is cheap to
Z6mm (8) = Zg’lmn (s) 05T (8) obtain, it_ can be compl_Jtation_aIIy expensive and resource

’ demanding when the simulation of data samples is costly.
whereZ&  (s) is the delayless impedance Reducing the spectral density of the data samples can be

an option when the data behaves smoothly, however a
higher accuracy of the model is obtained if the samples

The pole-residue representation 4f,,.,, (s) leads to ~ are selected more optimally with adaptive sampling
algorithms [12]. These techniques automatically select

Zg’l (s) = Z¢mn (s) eST'S" 9

,mn

Zdl £ c ~ Res), a quasi-optimal sample distribution, and an appropri-
Corm (8) = mn+semn+zs_pz ate model complexity, without requiring any a-priori
k=1

knowledge of the system.

+ Zp Resj, i Res), (10) The flow chart of the algorithm is shown in Figure 1.
i P It consists of an adaptive modeling loop, and an adaptive

The main drawback of the previously outlined aps_,ample selection loop.

proach resides in the necessity of preliminarily comput-
ing the partial elements over a wide frequency range ‘

] ) . ) Initialisation ‘
so to capture the damping in their magnitude. Usually T
the computation is performed in the extended range 4 Get initial samples ‘
fmae = 20 f, where f, is the maximum frequency at 1
which the models are accurate being &0 criterion 4 . \ Build rational models
_— . Adaptive Sampling L Adaptive Modeling
satisfied (active range). Loop (add samples) Loop (increase order)
Due tosina /2 nature of the damping [9] the behavior | Checkaceuracy
of partial elements magnitude is quite smooth and an _ ! :
L_| Reflective exploration

adaptive frequency sampling technique is likely applied.

Compare fits, check physics

[Il. ADAPTIVE SAMPLING ALGORITHM ‘
Output

Robust frequency domain fitting methods [10], [11]

can be applied to characterize the impedance dag 1. Flowchart of the adaptive sampling and modeling algorithm.
(5w, Z§(sw) OF Zg  (s.,)) by a rational improper

transfer functionR(s,,), which is of the form (5) or (10).

The goal of the algorithm is to identify the unknown The algorithm starts with 4 samples equidistantly
system parameters e, Resy, andpy, in such way that spaced over a certain frequency range of interest. De-
the accuracy of fitting model is bounded by the followingending on the number of available data samples, mul-
error function tiple rational models are built with different order of

numerator and denominator, exploiting all degrees of

\/ZW R(sw) — Z(s )|2 freedom. AI! rational fitting models'are evaluated in
Erms = w=1 w w7 (11) the data points, and compared against one another. If
w the error between the model, evaluated in the selected

For this particular application, the threshotd is sample points and the simulated data samples exceeds a
chosen to be 10'. certain threshold, the model is rejected, and the model’s

In order to satisfy this requirement, the order of theomplexity is increased. All models with different order
model (denoted byv,) should be sufficiently high. Also, of numerator and denominator are ranked, and the 2 best
the sampling density of the structure should be chosemodels with lowest overall error (sai; and Ry) are
in such way that all spectral dynamics of the system aretained. The difference between these 2 models is called
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the estimated fitting error quality (fitness) of a model, and the convergence of the
algorithm can be established. Moreover, such method
extends gracefully to multi-port systems.

w 2
s we1 |1 (8w) — R2(5w
ER]@S — E 1 | 1( W/) 2( )‘ (12)

: IV. NUMERICAL RESULTS
and new samples should be chosen in such way, that

the maximum estimated fitting error is minimized. FoA. Near field coupling
impedances, one can select data samples e.g. at the 1q first test two cellsa
frequencys,, where

| R (8w) = Ra(sw)|

and 3, are considered,
with dimensiond, = 1.5 mm, ig = 1.5 mm, w, = 1.5
mm andwg = 0.15 mm. This ensures that the cell di-
max (13) : .
w |R1(sy)] mensions match the requirementz(ly, g, wa, wg) <
. - . in/2 h ive fr n =1 Hz. Th
Note that the estimated fitting error is always a%‘mm./ 0 at the active eque CYa 0G €
L . maximum frequency at which the models need to be
estimation of the real error, as this would only be known . .
. ) ) accurate igy,.: = 20 f, = 200 GHz. They are touching,
after performing a lot of computationally expensive veri- e : . :
L ) X . " as shown in Fig. 2. Near field couplings have an impor-
fication simulations. Although the estimated fitting errar__. . - )
. . tant impact on stability and, therefore, the corresponding
provides a good measure to determine the frequency .. o
: : . . rtial elements need an accurate computation in both the
where the uncertainty of the model is maximal, it ca

sometimes cause the algorithm to converge prematuréj}fljuve and extended frequency ranges.

A good way to increase the reliability of the method, is
to combine this estimated fitting error with a heuristic
engine. Each time new models are generated, the algo-
rithm checks the heuristic rules, and terminates when
they are all satisfied.
Such rules, called reflective functions [13], compare
e.g.
« Correspondance of the phase
« Correspondance of the magnitude
« Correspondance of the Euclidean distance in the
complex plane
between
[¢] 0.5 1 1.5 2 25 3
» Fitting model and simulated data samples x[m] x10°
« Fitting models, calculated from overdetermined set
of equations (approximants)
« Fitting models, calculated when all interpolation

x10°

y [m]

Fig. 2. Two touching cells (example IV-A).

conditions are satisfied (interpolants) The self and mutual coefficients of potential have been

« Fitting models, based on a different set of suppogbmputed by means of different methods summarized

samples in Table 1. In the first test, the cells are coplanar and
« Fitting models, based on a subset of selected suppgfé touching along one edge. The reference results have
samples been obtained by a frequency dependent Gauss-Legendre

« Fitting models, based on neighbouring and overlaghtegration of order 10 over the surface (S-FD). Further,
ping frequency ranges the center to center approximation has been also assumed
while detecting passivity violations and other unphysind the integral has been computed by using a frequency

ical effects. independent surface integration (S-cc). Fig. 3 shows the

Unfortunately, it can be hard to define a reliable set ofiutual partial inductancé. p 1, evaluated by means of
reflective functions, since it requires a lot of experiendbe S-FD and S-cc techniques: it is clearly seen that the
and know-how. Therefore, one could also resort to center to center approximation 2 leads to poor results
GA-inspired algorithm [14] which is easy to implementinto the active and extended frequency ranges.
and gives reliable results as well. The major advantageThen, the delayless mutual impedanf,’%{aﬂ (s) =
of this approach, is that an explicit measure for thel, .z (s) has been computed and fitted applying the
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TABLE |

METHODS OF COMPUTATION FOR COEFFICIENTS OF POTENTIAL
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3 (b) Phase.
g 1 Fig. 4. Mutual impedanc&{’,; (s) (example IV-A). a) Magnitude.
b) Phase.

wo = wg = 1.5 mm; they are4 \,,;, far apart, as
shown in Fig. 5. Again, the delay extraction is applied
along with the AFS algorithm to the delayless mutual
impedanceZ{' ;(s) = sLpap(s). In this case 10
frequency samples have been selected to build a rational
model accurate up to 200 GHz, as Fig. 6 confirms. Also
in this case the rational model is able to capture the
AFS algorithm requiring only 9 frequency samples. Thﬁwysical damping of the mutual impedance by using a

results are shown in Fig. 4. very limited number of frequency samples.
The adaptive frequency sample procedure allows to build

a rational model which is accurate up to 200 GHz at a V. CONCLUSIONS

low computational cost. It is to be pointed out that the In this paper we present an innovative approach for
damping of the mutual impedance is properly modeledifficiently building accurate and stable PEEC models
thus preserving accuracy and improving stability. over a wide frequency range. The proposed method
combines three techniques: 1) delay extraction so that
low order rational models can be adopted; 2) adaptive
frequency sampling is used to build rational models of
impedances describing the magnetic field and electric

4 . . . .
0 20 40 60 80
Frequency [GHz]

. . . . .
100 120 140 160 180 200

Fig. 3. Mutual partial inductancd.p1> (example IV-A). Top:
magnitude; bottom: phase.

B. Far field coupling

In the second test two square cels and 3 are
considered, with dimensiong, lg = 1.5 mm,
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Fig. 5. Two non touching cellst(\...» far apart, example IV-B).

field couplings in the framework of PEEC modeling.
The examples presented confirm the robustness of the

proposed method in ensuring accuracy in both the active g
and extended frequency ranges and in improving the s

stability of the resulting PEEC models as a consequence
of the proper modeling of impedances damping.

Future work will involve generating stable time do-
main PEEC models by using the proposed approach,
analyzing passivity, estimating computational costs.
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