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1. INTRODUCTION

Accurate synthesis of compact transfer function
models is crucial for reliable system-level simu-
lations. The identification of such models from
measurements or first-principle simulators is nu-
merically not a trivial task, even for linear systems
(Pintelon and Schoukens, 2001).

Recently, (Gustavsen and Semlyen, 1999) pre-
sented a frequency-domain identification method
(called Vector Fitting, VF) which minimizes
a weighted linear cost function, by iteratively
relocating the transfer function poles using a
Sanathanan-Koerner (SK) iteration (Sanathanan
and Koerner, 1963; Hendrickx et al., 2006). Nu-
merical ill-conditioning is avoided by using a set
of partial fraction basis functions, which are based
on a well-chosen prescribed set of poles. Such
rational basis functions have the advantage that
an implicit weighting scheme can be applied, as
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described in (Deschrijver et al., 2007a). The im-
plicit weighting was found to give more reliable
results if the prescribed poles need to be relocated
over long distances.

In (Deschrijver et al., 2007b), it was shown that
the method can achieve a higher robustness if the
basis functions are orthonormalized using a Gram-
Schmidt procedure (called Orthonormal Vector
Fitting, OVF). Using these orthonormal rational
functions, the conditioning of the system equa-
tions becomes less sensitive to the initial pole
specification, and accurate models can be com-
puted in fewer iterations. This improves the ef-
ficiency of the method and reduces the overall
computation time.

In this paper, a generalization of the OVF ap-
proach is presented, which allows the identifica-
tion of a transfer function based on transient
input-output port responses. The idea is based
on a time-domain implementation of the VF tech-
nique, as proposed by (Grivet-Talocia, 2004). This
paper illustrates that the advantages of orthonor-



malization and time-domain identification can be
combined. The effectiveness of the proposed tech-
nique is illustrated by an example.

2. MODEL REPRESENTATION

Traditionally, a rational transfer function R(s) is
defined as the quotient of two polynomials. Based
on the measured or simulated spectral response
(s,H(s)) of a physical structure, the coefficients
of numerator N(s) and denominator D(s) are
estimated, such that the least-squares distance
between the model and the data is minimized
(Pintelon et al., 1994).

R(s) =
N(s)
D(s)

=

P∑
p=1

cpΦp(s, a)

c̃0 +
P∑

p=1

c̃pΦp(s, a)

(1)

In the frequency-domain OVF technique, an im-
proved numerical robustness is obtained by ex-
panding numerator and denominator as a linear
combination of Muntz-Laguerre orthonormal ra-
tional functions Φp(s, a), which are based on a
prescribed set of stable poles a = {−a1, ...,−aP }
(Heuberger et al., 2005). If −ap is a real pole,
then the orthonormal basis functions Φp(s, a) are
defined as

Φp(s, a) =

√
2<e(ap)
s + ap




p−1∏

j=1

s− a∗j
s + aj


 , (2)

and a linear combination is formed when two poles
−ap = −a∗p+1 form a complex conjugate pair

Φp(s, a) =

√
2<e(ap)(s− |ap|)

(s + ap)(s + ap+1)




p−1∏

j=1

s− a∗j
s + aj


(3)

Φp+1(s, a) =

√
2<e(ap)(s + |ap|)

(s + ap)(s + ap+1)




p−1∏

j=1

s− a∗j
s + aj


(4)

It can be shown that these basis functions are
orthonormal with respect to the following inner
product (1 ≤ m,n ≤ P )

〈Φm(s),Φn(s)〉s =
1

2πi

∫

iR

Φm(s)Φ∗n(s)ds (5)

3. TRANSFER FUNCTION
IDENTIFICATION

3.1 Levi’s Estimator

The goal of the frequency-domain identification
process, is to identify the coefficients cp and c̃p

in (1) such that the complex fitting error is min-
imized in a least-squares sense. Levi’s linear ap-
proximation of this non-linear identification prob-
lem can be obtained by solving the following set of
equations for all frequencies {sk}Ks

k=0 (Levi, 1959)

arg min
cp,c̃p

Ks∑

k=0

|N(sk)−H(sk)D(sk)|2 (6)

After calculating the values of cp and c̃p, it is
easy to see that equation (1) can be simplified
by cancelling out the common poles a. It follows
that the poles of the transfer function R(s) are
then actually the zeros of the denominator D(s).

It is known that Levi’s estimator is biased, and
therefore does not guarantee convergence to the
true least-squares solution. In order to relieve
the unbalanced weighting, a Sanathanan-Koerner
iteration can be applied (Sanathanan and Ko-
erner, 1963). This is described in the following
section.

3.2 Sanathanan-Koerner Iteration

In successive iterations (t = 0, ..., T ), the coef-
ficients c

(t)
p and c̃

(t)
p can be updated iteratively

by minimizing the following Sanathanan-Koerner
cost function (Sanathanan and Koerner, 1963),
provided that initially D(−1)(s) = 1.

min
c
(t)
p ,c̃

(t)
p

Ks∑

k=0

∣∣∣∣
N (t)(sk)

D(t−1)(sk)
− D(t)(sk)H(sk)

D(t−1)(sk)

∣∣∣∣
2

(7)

= min
c
(t)
p ,c̃

(t)
p

Ks∑

k=0

∣∣∣∣
N (t)(sk)U(sk)

D(t−1)(sk)
− D(t)(sk)Y (sk)

D(t−1)(sk)

∣∣∣∣
2

(8)

In the classical SK formulation, the coefficients
c
(t)
p and c̃

(t)
p of N(s) and D(s) are estimated,

provided that each equation is given an explicit
frequency-dependent weighting 1/D(t−1)(s).

The VF and OVF algorithm perform this weight-
ing in an implicit way, by estimating the coef-
ficients d

(t)
p of N (t)(s)/D(t−1)(s) and the coeffi-

cients d̃
(t)
p of D(t)(s)/D(t−1)(s) instead, where

N (t)(s)
D(t−1)(s)

=
1

D(t−1)(s)

P∑
p=1

c(t)
p Φp (s, a) (9)

=

P∏
p=1

(s + ap)
P−1∏
p=1

(s + z(t)
p,n)

P∏
p=1

(s + z
(t−1)
p,d )

P∏
p=1

(s + ap)

(10)

=
P∑

p=1

d(t)
p Φp

(
s, z

(t−1)
d

)
(11)



and

D(t)(s)
D(t−1)(s)

=
1

D(t−1)(s)

(
c̃
(t)
0

P∑
p=1

c̃(t)
p Φp (s, a)

)
(12)

P∏
p=1

(s + ap)
P∏

p=1

(s + z
(t)
p,d)

P∏
p=1

(s + z
(t−1)
p,d )

P∏
p=1

(s + ap)

(13)

= d̃
(t)
0 +

P∑
p=1

d̃(t)
p Φp

(
s, z

(t−1)
d

)
(14)

It follows from these equations that multiplica-
tion by an explicit frequency-dependent weighting
as shown in (9) and (12) is equivalent to usage
of (6) if the prescribed poles of the basis func-
tions (2)-(4) are replaced by the zeros z

(t−1)
d ={

−z
(t−1)
1,d , ...,−z

(t−1)
P,d

}
of D(t)(s)/D(t−1)(s) in each

iteration, see (11) and (14). The iterative replace-
ment of the prescribed (or previously calculated)
basis function poles is called pole-relocation.
To ensure system stability, unstable poles are
“flipped” into the left half of the complex plane
by inverting their sign.

It was shown in (Deschrijver et al., 2007a) that
this implicit weighting approach often provides
a better numerical conditioning, especially if the
weighting factor 1/D(t−1)(s) has a large dynamic
variation over the frequency range of interest.
Some additional improvements are obtained by
scaling each column of the associated system
equations to unity length. Convergence of this
pole-relocation process is typically obtained in
a few iterations provided that the initial set of
prescribed poles a is well-chosen, i.e. as described
in (Gustavsen and Semlyen, 1999).

3.3 Partial Fraction Representation

In the final iteration (t = T ), the transfer function
can be defined as the ratio of (11) and (14) such
that

R(T )(s) =

P∑
p=1

d(T )
p Φp

(
s, z

(T−1)
d

)

d̃
(T )
0 +

P∑
p=1

d̃(T )
p Φp

(
s, z

(T−1)
d

) (15)

It is clear that (15) can be simplified by cancelling
out the relocated basis function poles z

(T−1)
d .

Therefore, it follows that the poles of the transfer
function are essentially the zeros of (14) at iter-
ation step T . Based on the minimal state-space
realization of D(T )(s)/D(T−1)(s),

sX(s) = AX(s) + BU(s) (16)

Y (s) = CX(s) + DU(s)

the poles z
(T )
d of the final transfer function R(T )(s)

can then be found by solving the eigenvalues of
A − BD−1C (Goodwin et al., 2001; Brezinski,
2002). More details about the construction of
this realization are well described in (Deschrijver
et al., 2007a). Once the poles are known, the
transfer function can easily be represented as a
pole-residue model, by solving the residues γp as
a linear problem.

arg min
γp

Ks∑

k=0

∣∣∣∣∣
P∑

p=1

γp

sk + z
(T )
p,d

−H(sk)

∣∣∣∣∣

2

(17)

Such rational function representation can eas-
ily be realized as a SPICE equivalent circuit
(Antonini, 2003).

4. TIME DOMAIN ALGORITHM

To obtain the time-domain identification algo-
rithm, equation (8) is transformed to the time-
domain using a direct application of the inverse
Laplace Transformation

f(t) = L−1F (s) =
1

2πi

∫

iR

F (s) estds. (18)

An analogous cost function needs to be mini-
mized, which is written in terms of an input signal
u(t) and the corresponding output signal y(t)

min
d
(t)
p ,d̃

(t)
p

Kt∑

k=0

∣∣∣∣
N (t)(tk)u(tk)
D(t−1)(tk)

− D(t)(tk)y(tk)
D(t−1)(tk)

∣∣∣∣
2

(19)

provided that u(t) and y(t) represent the Inverse
Laplace Transform of U(s) and Y (s) respectively.
If φp(t, z

(t−1)
d ) denotes the Inverse Laplace Trans-

form of Φp(s, z
(t−1)
d ), and f(t) ?g (t) the convolu-

tion of f(t) and g(t), then it follows that

N (t)(t)u(t)
D(t−1)(t)

=
P∑

p=1

d(t)
p

(
u (t) ? φp

(
t, z(t−1)

d

))

D(t)(t)y(t)
D(t−1)(t)

=
P∑

p=1

d̃(t)
p

(
y (t) ?φp

(
t, z(t−1)

d

))

+d̃
(t)
0 y (t) (20)

In the time-domain, the basis functions φp(t)
are orthonormal with respect to the time-domain
inner product (1 ≤ m,n ≤ P )

〈φm (t), φn (t)〉t =

∞∫

0

φm(t)φn(t)dt (21)



Since the Laplace transform is a unitary transfor-
mation from the time-domain to the frequency-
domain, this implies that

〈Lφm (t),Lφn (t)〉s = 〈φm (t), φn (t)〉t (22)

and

〈L−1Φm(s),L−1Φn(s)〉t = 〈Φm(s), Φn(s)〉s (23)

It is noted that the basis functions (2)-(4) are
obtained by a Gram-Schmidt orthonormalization
on a set of partial fractions {1/(s + ap)}P

p=1,
provided that the poles −ap are all stable (i.e.
located in the left half of the complex plane).
Therefore, a Gram-Schmidt orthonormalization
on the set of exponentials {e−apt}P

p=1 in the time-
domain, will yield the inverse Laplace transform
of the frequency-domain basis functions (2)-(4).
It follows that the relevant time-domain functions
φp(t) are therefore given by the inverse Laplace
transform of Φp(s) (Titchmarsh, 1984).

The fact that no explicit expression is available for
these basis functions is of no consequence, because
equation (19) only needs the convolution of these
functions with the input and output signals u(t)
and y(t). To compute the filtered signals u (t) ?
φp (t) or y (t) ? φp(t), the state space realization
of the orthonormal basis functions Φp can be
simulated with input u(t) or y(t), respectively.

A direct application of equation (19) to the time-
domain samples {tk, u(tk), y(tk)}Kt

k=0 leads to a
set of equations which are linear in terms of the
coefficients d

(t)
p and d̃

(t)
p . Using these coefficients

and the state-space realization of the basis func-
tions φp (which is equivalent to the realization of
Φp), the transfer function (15) can easily be con-
structed. Based on this transfer function, the poles
z
(T )
d of the frequency-domain transfer function can

be found by solving an eigenvalue problem, see
section 3.3. Once the poles are known, the time-
domain transfer function can directly be obtained
by solving the coefficients γp as a linear problem.

arg min
γp

Kt∑

k=0

∣∣∣∣∣
P∑

p=1

γp

(
u (tk) ? e−z

(T )
p,d

tk

)
− y(tk)

∣∣∣∣∣

2

(24)

5. NUMERICAL EXAMPLE

The time-domain identification algorithm is ap-
plied to calculate the transfer function of a passive
system, based on the transient input and output
signal as partially shown in Figure 1. The system
is excited with a Gaussian pulse, which is centered
at t = 0.6 ns, with a width of 0.2 ns and a
height of 1 in normalized units. Figure 2 shows
the frequency response as a parametric curve in
function of the complex frequency variable s.
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Input signal u(t)

Fig. 1. Input and output signal of time-domain
data over the time interval [0 ns - 30 ns]
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Fig. 2. Complex frequency response as a paramet-
ric curve in function of the frequency variable
s (Smith Chart).

An initial set of 104 starting poles is typically
chosen as proposed by (Gustavsen and Semlyen,
1999)

−ap =−α + βi,−ap+1 = −α− βi

α = υβ (25)

where the imaginary parts β are linearly dis-
tributed over the frequency range [0 − 3 GHz],
and υ = 0.01. The parameter υ is chosen suffi-
ciently small such that the initial poles result in
a well-conditioned system matrix. The distribu-
tion of the poles over the entire frequency range
reduces the probability that poles must be relo-
cated over long distances. It is clear that other
prescribed pole-location schemes are also possible,
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Fig. 3. Time-domain OVF approximation and
reference data over the interval [0 ns - 30 ns].

however they often require more pole-relocation
iterations.

Using the set of prescribed poles (25), the weighted
linear cost function (19) is solved iteratively, and
updated estimates of the model coefficients are ob-
tained. The poles, which define the time-domain
basis functions, are calculated in each iteration
by solving an eigenvalue problem that is based
on the estimated coefficients d̃

(t)
p . This process is

repeated until the poles are converged.

In the final iteration, the time-domain basis func-
tions are based on the converged set of relocated
poles, and the overall transfer function is calcu-
lated by minimizing the cost function (24).

Due to the robustness of the orthonormal basis
functions, the time-domain OVF technique is less
sensitive to the initial pole specification than the
time-domain VF technique presented by (Grivet-
Talocia, 2004). As an example, the real part of the
basis function poles is chosen to be non-negligible
such that υ = 0.05, and the algorithm is allowed
to perform only 1 single iteration.

Figure 3 shows that the OVF technique provides a
highly accurate approximation of the time-domain
response, since there is no visible difference be-
tween the data and the transient response of
the model. As can be seen from Figure 4, the
maximal absolute error corresponds to 0.0032. If
the same calculations are performed using the
VF approach, then the maximal absolute error
corresponds to 0.0212, which results in significant
time-domain discrepancies.

As a means of validation, the OVF-calculated
transfer function is simulated in the frequency-
domain and compared to the reference spectral
response. Figures 5 and 6 confirm that an overall
good approximation is obtained, both in terms of
the magnitude and the phase.
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Fig. 4. Absolute fitting error of transient response
over the interval [0 ns - 30 ns]. (1 iteration,
υ = 0.05)
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Table 1. Maximum absolute fitting er-
ror of transient response in successive

iterations (υ = 0.05)

Iteration VF OVF

1 0.0212 0.0032

2 0.0032 0.0015

3 0.0032 0.0012

4 0.0017 0.0012

5 0.0012 0.0008

6 0.0010 0.0008

Table 1 illustrates that both approaches even-
tually converge to better, comparable results if
additional iterations are performed. This results
from the fact that the initial poles, (which are
selected in a non-optimal way) lead to a poor
numerical conditioning in the first iterations. As
more iterations are performed, the poles are relo-
cated to a better position, and the accuracy of the
fitting model improves gradually. Therefore, the
OVF approach is preferable, as it is numerically
more robust towards to initial pole specification.

Some timing results on this example indicate that
a single VF/OVF iteration takes 6.4 seconds on a
P4 2.4 GHz computer with 512 MB RAM. This
illustrates that the method is computationally
efficient, especially since the transfer function has
a relatively high order (104 poles).
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7. CONCLUSIONS

A new approach is presented for time-domain
identification of transfer functions, based on tran-
sient port responses. The presented technique
combines the use of a Sanathanan-Koerner iter-
ation and an orthonormal set of basis functions to
improve the numerical conditioning. It is shown
that the method is numerically robust, and able
to fit highly dynamic responses in an efficient way.
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