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SUMMARY

Many different techniques to reduce the dimensions of a model have been proposed in the near past.
Krylov subspace methods are relatively cheap, but generate non-optimal models. In this paper a
combination of Krylov subspace methods and orthonormal vector fitting (OVF) is proposed. In that way a
compact model for a large model can be generated. In the first step, a Krylov subspace method reduces the
large model to a model of medium size, then a compact model is derived with OVF as a second step.
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1. INTRODUCTION

In many areas of application, and certainly also in the electronic industry, complex simulations
have to be performed. Model order reduction plays a vital role in keeping up with the pace of
the ever increasing complexity of the simulations. Many different reduction techniques have
been proposed in the near past. Two interesting methods are exposed here, Krylov subspace
methods [1–3] and orthonormal vector fitting (OVF) [4, 5].

Krylov subspace methods are relatively cheap and can therefore handle systems with a few
thousand degrees of freedom. In the meantime, the methods are known for their non-optimality:
reduced models generated by Krylov subspace methods are generally too large, since they
contain information which is not needed for a good approximation.
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Orthonormal vector fitting is an identification method, which is typically used to approximate
simulated or measured frequency responses by an analytic function. Rather than reducing the
state-space dimensions of a model, this technique is used to build a new model with a reduced
model complexity. The goal of this algorithm is to parameterize the transfer function, such that
its spectral behaviour matches the response of the larger model as accurately as possible.

In this paper, a combination of both methods is proposed. This way, a large model can be
reduced to a compact model. In the first step, a Krylov subspace method reduces the large
model to a model of medium size, then a compact model is derived using OVF in a second step.

2. KRYLOV SUBSPACE METHODS

2.1. General

The following state-space system is considered

E
d

dt
xðtÞ ¼ AxðtÞ þ BuðtÞ ð1Þ

yðtÞ ¼ CxðtÞ þDuðtÞ ð2Þ

where xðtÞ is the state space of the system, uðtÞ is the input and yðtÞ is the output of the system.
A;B;C;D and E represent the state matrix, input matrix, output matrix, feedthrough matrix and
descriptor matrix, respectively. In general, xðtÞ has a large number of entries, say n and in the
case of modelling an electrical component it can consist of both voltages and currents. The
system can have more than one, say p; inputs. In that case the input selecting matrix B has p
columns.

After Laplace transforming to the frequency domain and after eliminating the state-space
vector XðsÞ; for this system a transfer function HðsÞ can be formulated, which represents a direct
relation between input UðsÞ and output YðsÞ

HðsÞ ¼ CðsE� AÞ�1BþD ð3Þ

2.2. Method

In Krylov subspace methods, a Krylov space associated to these system matrices is generated.
The definition of this Krylov space can differ. In PRIMA [2] the moments of the transfer
function are collected in one space. The Krylov space is then defined as follows:

KqðbA; bBÞ ¼ ½bB; bAbB; bA2bB; . . . ; bAqbB� ð4Þ

with bA ¼ ðA� s0EÞ
�1E and bB ¼ ðs0E� AÞ�1B: In [3] the Krylov space is based on the expansion

of the transfer function in Laguerre functions.
If the size of the Krylov space, pq; is smaller than the size of the system, n; a reduction can be

performed by projecting the system matrices onto the Krylov space, in the following way:eE ¼ VTEV; eA ¼ VTAVeB ¼ VTB; eC ¼ CVeD ¼ D ð5Þ
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where V is an orthonormal basis of the Krylov subspace. The reduced matrices then form a
reduced system:

eE d

dt
exðtÞ ¼ eAexðtÞ þ eBuðtÞ ð6Þ

eyðtÞ ¼ eCexðtÞ þ eDuðtÞ ð7Þ

The transfer function of the reduced system approximates the transfer function of the original
system well within a certain frequency range. It is proven that PRIMA with a Krylov subspace
of order q preserves qmoments of the transfer function [6]. Moreover, because of the orthogonal
projection, stability and passivity are preserved [2].

Krylov subspace methods are relatively cheap. For a single point expansion, one LU-
decomposition is calculated and can be reused in every iteration. The cost of an LU-
decomposition is of the order n3; the rest of the computations needed to derive the reduced
model will then be Oðn2Þ: This makes Krylov subspace methods applicable to large models.
Multiple input and output ports can very easily be incorporated in the reduced model, although
the size of the model will increase proportionally to the number of the ports.

2.3. Redundancy

A well-known drawback of Krylov subspace methods is their redundancy: the models generated
by Krylov subspace methods are in general larger than strictly needed. The iterative method
tries to capture the dominant poles in quite a brute force way. It is not known beforehand what
minimal order is needed for a good approximation. Besides, there is no practical error-bound
known for these methods, although an error estimate can be derived. In practice, we see that it
might take long before the essential poles are approximated well. Moreover, if multiple input
ports are considered it might be that the behaviour of one or more ports stays behind with the
rest of the ports. More iterations for these ports are needed, while an equal amount of
information for all the ports is added to the space.

Quite a few propositions are published to cure this redundancy. This can either be done by a
different reduction algorithm as a second step [7, 8], or by making the Krylov subspace method
more efficient [9]. In [10] a way to stop the iterative process for one column while proceeding
with the other ports is pointed out. Although, this partly solves the problem, the reduced models
may still suffer from redundancy.

In this article we propose to combine Krylov subspace methods with OVF as a post-
processing step.

3. ORTHONORMAL VECTOR FITTING

3.1. Method

The OVF method approximates the Laplace domain data samples ðsk;HðskÞÞ;8k ¼ 0; . . . ;K ;
using a rational transfer function RðsÞ [11]

RðsÞ ¼
NðsÞ

DðsÞ
¼

PP
p¼1 cpfpðs; aÞ

*c0 þ
PP

p¼1 *cpfpðs; aÞ
; s ¼ i2pf ð8Þ
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The numerator NðsÞ and denominator DðsÞ of the transfer function are represented as a linear
combination of P orthonormal rational functions [12–15], which are based on a prescribed set of
poles a ¼ f�a1; . . . ;�aPg: Given a set of Laplace data samples ðsk;HðskÞÞ; the coefficients cp and
*cp (which are the real-valued system parameters) need to be estimated such that RðskÞ ’ HðskÞ;
for all data samples k ¼ 0; . . . ;K : The denominator has an additional basis function which
equals the constant value 1. The basis functions are governed by the following closed form
expression:

fpðs; aÞ ¼
Yp�1
j¼1

s� anj

sþ aj

 ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ReðapÞ

p
sþ ap

ð9Þ

if �ap is a real pole, and a linear combination of 2 basis functions is formed if �ap ¼ �a
n
pþ1 [16]

fpðs; aÞ ¼
Yp�1
j¼1

s� anj

sþ aj

 ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ReðapÞ

p
ðs� japjÞ

ðsþ apÞðsþ apþ1Þ
ð10Þ

fpþ1ðs; aÞ ¼
Yp�1
j¼1

s� anj

sþ aj

 ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ReðapÞ

p
ðsþ japjÞ

ðsþ apÞðsþ apþ1Þ
ð11Þ

It is noted that the prescribed poles are chosen according to the following heuristical scheme

�ap ¼ �aþ bi; �apþ1 ¼ �a� bi ð12Þ

a ¼ b=100 ð13Þ

with imaginary parts b covering the frequency range of interest. Experimental results show that
this gives the best overall results in terms of numerical robustness and convergence speed.

Levi’s estimator [17] can be used to calculate the coefficients cp and *cp; which corresponds to
minimizing the following cost function:

arg min
c;*c

XK
k¼0

XP
p¼1

cpfpðsk; aÞ � *c0 þ
XP
p¼1

*cpfpðsk; aÞ

 !
HðskÞ

�����
�����
2

0@ 1A ð14Þ

The numerator and denominator of (8) can then be factorized as follows:

NðsÞ ¼
XP
p¼1

cpfpðs; aÞ ¼

QP�1
p¼1 ðsþ zp;nÞQP
p¼1 ðsþ apÞ

ð15Þ

DðsÞ ¼ *c0 þ
XP
p¼1

*cpfpðs; aÞ ¼

QP
p¼1 ðsþ zp;dÞQP
p¼1 ðsþ apÞ

ð16Þ

and the transfer function RðsÞ is easily obtained as

RðsÞ ¼
NðsÞ

DðsÞ
¼

QP�1
p¼1 ðsþ zp;nÞQP
p¼1 ðsþ zp;dÞ

¼
XP
p¼1

apfpðs; zdÞ ð17Þ
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The poles zd ¼ f�z1;d ; . . . ;�zP;dg can be calculated directly as the zeros of the minimal state-
space realization of DðsÞ; so the calculation of the values for a reduces to a linear problem.
In order to relocate the poles to a better position, a Sanathanan–Koerner (SK) iteration
[18, 19] can be applied, using an implicit weighting scheme. This means that the coefficients d ðtÞ

and *d ðtÞ of the weighted numerator ðNðtÞ=Dðt�1ÞÞ and denominator ðDðtÞ=Dðt�1ÞÞ are estimated
(Equation (20)), rather than the coefficients cðtÞ and *c ðtÞ of numerator ðNðtÞÞ and denominator
ðDðtÞÞ (Equation (19)), where w

ðtÞ
k ¼ 1=Dðt�1ÞðskÞ

arg min
XK
k¼0

NðtÞðskÞ

Dðt�1ÞðskÞ
�

DðtÞðskÞ

Dðt�1ÞðskÞ
HðskÞ

���� ����2
 !

ð18Þ

¼ arg min
cðtÞ;*cðtÞ

XK
k¼0

w
ðtÞ
k

XP
p¼1

cðtÞp

sk þ ap
� *c

ðtÞ
0 þ

XP
p¼1

*c ðtÞp

sk þ ap

 !
HðskÞ

" #�����
�����
2

0@ 1A ð19Þ

¼ arg min
dðtÞ;*dðtÞ

XK
k¼0

XP
p¼1

d ðtÞp

sk þ z
ðt�1Þ
p;d

� *d
ðtÞ
0 þ

XP
p¼1

*d ðtÞp

sk þ z
ðt�1Þ
p;d

 !
HðskÞ

�����
�����
2

0@ 1A ð20Þ

The introduction of an implicit weighting does not pose a problem, as the zeros of DðtÞ and
DðtÞ=Dðt�1Þ (i.e. the relocated transfer function poles) are equivalent. The implicit scheme,
however, is numerically more reliable if the poles are not optimally chosen. The reader is
referred to [4, 5] for more details about this procedure.

3.2. Order estimation & sample distribution

3.2.1. Adaptive frequency sampling (AFS). The goal of the OVF reduction step is to obtain a
transfer function which approximates the behaviour of the original system as accurately as
possible, using a restricted number of poles.

A uniform frequency sampling of the response often requires a priori knowledge about the
dynamics of the structure. If the sampling is too sparse dense, undersampling may occur which
results in the loss of important features of the response. Therefore, it is critical to select an
appropriate sample distribution which captures all spectral dynamics of the original system,
including resonances and coupling effects. On the other hand, oversampling is also undesired as
it leads to a waste of computation time and resources. Even if most of the desired frequency
range is oversampled, some important effects can still be missed due to local undersampling.
A similar reasoning holds for the estimation of the model order. Overfitting of the structure
unnecessarily increases the model complexity and complicates the enforcement of passivity,
while undermodelling results in an inaccurate fitting model. Therefore, an AFS technique can be
applied which adaptively selects an appropriate sample distribution and automatically
converges if a desired accuracy level is reached. Such AFS algorithms minimize the
computational cost of acquiring and representing observation data to a desired accuracy or
uncertainty over a predefined frequency range of interest. For details, the reader is referred to [20].
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3.2.2. Simplified approach. A simplified approach consists of selecting four initial data samples
which are equidistantly spread over the frequency range of interest for each matrix element.
Then, a rational fitting model is calculated using OVF. Between each pair of successive
frequency samples, one or two additional samples are evaluated and compared to the response
of the transfer function. If the deviation is too large, the sample distribution can be further
refined where needed, by evaluating intermediate data points until the error is below an accuracy
threshold. The order of the transfer function can be controlled by either removing the poles
from the high-order macromodel or adding poles to the low-order macromodel. In [21], the
order of the model is estimated and reduced by adding poles that can be extracted from the
frequency response and removing redundant poles that do not significantly contribute to the
accuracy of fit. A possible decision criterion for determining redundant poles is the root-mean
square (RMS) of the frequency response of the corresponding pole–residue pair over the
frequency range of interest.

3.3. Extension to multi-port systems

The extension of OVF to multi-port systems can be done in a similar way as the matrix version
of the classical Vector Fitting algorithm [22]. The basic idea is that all elements of the system
matrix are stacked in one column, and are fitted using a common set of poles. This reduces to
solving the following iterative problem:

arg min
d
ðtÞ
ij
;*d ðtÞ

XK
k¼0

XNp

i¼1

XNp

j¼1

N
ðtÞ
ij ðskÞ

Dðt�1ÞðskÞ
�

DðtÞðskÞ

Dðt�1ÞðskÞ
HijðskÞ

�����
�����
2

0@ 1A ð21Þ

where Hij represents the i; jth element of the system matrix. The reader is referred to [22] for
more implementation details. In practice, the dimensions of the system equations may become
quite large, even for systems with a moderate amount of ports and poles. In fact, the number of
elements in the pole identification matrix requires a large amount of memory resources and
computation time. According to our experience, it is often sufficient to select a subset of the
elements of the system matrix in the pole identification step.

3.4. Passivity enforcement

Impedance system matrices of passive electrical networks are positive real [23]. A square
rational matrix function, HðsÞ; is said to be positive real if the following criteria are satisfied:

1. HðsÞ is analytic, for ReðsÞ > 0:
2. HnðsÞ ¼ HðsnÞ:
3. HðsÞ þHTðsnÞ50:

The first and second criteria can easily be imposed by the OVF algorithm. Loosely speaking,
these restrictions imply that all poles must be located in the left half of the complex plane, and
that the poles and zeros of the transfer function are real, or occur in complex conjugate pairs
(i.e. the coefficients of the transfer function are real). The third criterion is not satisfied in the
general case, however, several techniques are available to enforce this constraint a posteriori.
The interested reader is referred to [24, 25].
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4. EXAMPLES

As an example we consider a planar version of a double LC-filter. The layout (and mesh) is
given in Figure 1.

The quasi-static EM-behaviour of this model is linear time invariant, and can be formulated
as a state-space system with 695 poles and 11 ports. In Figure 2 the magnitude of the H11 entry
(impedance element Z11) of the system matrix is given.

First we will consider only one port of the model. This single-input–single-output model
corresponds with the H11-element of the transfer function. We reduced the model by PRIMA to

Figure 1. Printed circuit board layout of double LC filter.
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Figure 2. The H11 entry of the transfer function of the double LC filter model.
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size 58. The parameter s0 in the moment expansion for PRIMA was chosen equal to 3� 109;
according to the maximum frequency of interest. We define a relative error to indicate the
accuracy of the approximation as follows: let HijðsÞ and *HijðsÞ be all function values of the ði; jÞ-
entry of the original and reduced system matrix, respectively, then the error is defined as

eij ¼ max
s

HijðsÞ � *HijðsÞ
�� ��

HijðsÞ
�� ��

 !
ð22Þ

The relative error e11 between the original and the Krylov reduced model is then equal to
6:7� 10�4: Using the OVF method, the state-space dimensions of the reduced model can be
further minimized. A representative set of data samples is gathered as described in Section 3.2.2,
and a rational model was build using 31 poles. The resulting accuracy in all selected data
samples corresponds to 1:5� 10�6: As a verification step, the reduced model was compared over
a dense set of data samples and the overall accuracy is 3:5� 10�5: The fitting error (i.e. the
difference between the Krylov and OVF approximant) is shown in Figure 3.

As an example, assume that the number of poles is overestimated, like e.g. 82 poles. In this
case, the redundancy of a pole–residue pair can be estimated by calculating the RMS of the
frequency response. In typical cases, the magnitude of the residues of the redundant pairs is
quite small in relation to the magnitude of the pole. A fitting model is calculated in five
SK-iterations, and the redundant pairs are discarded in each iteration. This results that the
algorithm reduces the model complexity to 31 poles in five SK-iterations. Table I illustrates the
reduction of the poles per iteration, and shows its corresponding error. Optionally, one can use
a stepwise reduction of the number of poles as a post-processing step to further reduce the
number of poles. It should be noted, however, that this reduction will be compensated by an
increase of the fitting error.

The 695 poles of the original problem are reduced to 58 poles after Krylov reduction, and
reduced to 31 poles after OVF. The overall error is bounded by 7:05� 10�4:
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Figure 3. Fitting error between OVF (31-pole) and Krylov (58-pole) approximant.
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Now, we consider the full multiple-input–multiple-output (MIMO) model. The model is
first reduced to size 143 by PRIMA. The maximum over all 11� 11 relative errors between
original and reduced model is then 4:85� 10�4: Based on a representative set of data
samples, each element on the diagonal of the system matrix is modelled using a common set of
31 poles. The order is step-wise increased (e.g. by 1 or 2 poles) until the accuracy is sufficiently
high. When the order is set to 46, the estimated accuracy of all elements is equal to 2:74� 10�5:
This accuracy was verified on a very dense set of samples, and corresponds nicely to the
estimate.

5. TIMING RESULTS

This section describes some timing results which illustrate the performance of the Krylov and
OVF methods. The computer code was implemented on a Pentium 4 2.66GHz PC, in a Matlab
environment. It is noted that Matlab is a non-compiled language, so the timing results are
sensitive to the actual implementation. All tests in this section are performed on the 11-port
Double LC model as discussed in the Examples section.

Table II shows the computation time which is required to reduce the full MIMO model, while
Table III considers the computation time to reduce theH11 entry (impedance element Z11) of the
system matrix. A comparison is given in terms of the number of selected data samples, and the
size of the reduced model.

It is observed that the required computation time of the OVF method (1 iteration) grows
quickly, if a large amount of data samples or poles is selected. This confirms the claim that smart
sampling strategies (as described in Section 3.2) are of paramount importance, especially if the
number of ports is large. A known disadvantage of data-driven MOR methods (such as OVF) is
that one needs to calculate the frequency response of the structure. In the general case, the
computation of a single data sample may take several minutes if the state matrix A is large. On
the other hand, a reduced order model can be calculated very efficiently using the Krylov
method. This follows from the fact that the computation time does not grow unacceptably with
the size of the reduced system. Such a model-driven MOR approach also avoids the
computation of the frequency response, at the expense of redundancy in the reduced model. By
combining the OVF method with the Krylov method, the state matrix is first reduced to a
smaller size which is then feasible to handle with OVF. This combined approach significantly
speeds up the reduction process.

Table I. Pole-reduction using SK-iteration.

Iter Poles Fitting error

1 82 1:0056� 10�9

2 43 6:0139� 10�10

3 37 8:8089� 10�10

4 33 3:1227� 10�8

5 31 1:5122� 10�6
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6. CONCLUSIONS

Krylov subspace methods, like PRIMA and Laguerre-SVD, have proved to be very useful in
applications where the dimensions of the state-space realization are significantly large. These
methods can provide a good approximation at a relatively low computational cost.
Nevertheless, the size of the reduced model is in general not sufficiently small.

Once the model is reduced to a size for which the full transfer function can be calculated in a
reasonable time, the orthonormal vector fitting (OVF) techniques comes into play. This method
is essentially an elegant combination of a Sanathanan–Koerner iteration using orthonormal
rational functions [4]. Using this method, a compact model can easily be derived as a second
step in the reduction process. This approach extends easily to MIMO systems.

We have to remark that the preservation of passivity, a merit of Krylov space methods as for
instance PRIMA and Laguerre-SVD, is not guaranteed by OVF. Nevertheless, post-processing
techniques are available, which can be applied to enforce such physical behaviour.
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