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Stability and Passivity Enforcement of Parametric
Macromodels in Time and Frequency Domain
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Abstract—This paper presents a robust technique for the macro-
modeling of time-domain and frequency-domain responses, which
are parameterized by one or more design variables. The represen-
tation of the multivariate macromodel ensures that stability of the
transfer function poles is enforced by construction. Passivity of the
parametric macromodel can be enforced in a post-processing step
by perturbation of barycentric weights.

Index Terms—Interpolation, parametric macromodels, rational
functions, time-domain fitting, vector fitting.

I. INTRODUCTION

R OBUST parametric macromodeling is becoming increas-
ingly important for the design, study, and optimization

of microwave structures. Parametric macromodels approximate
the variation of the complex electromagnetic (EM) behavior of
a multiport system in terms of several design variables that de-
scribe physical properties of the structure. Such macromodels
are frequently used for efficient design space exploration, de-
sign optimization, and sensitivity analysis [1]–[4].

Recently, a multivariate extension of the orthonormal vector
fitting (OVF) technique was introduced in [5] and [6]. It was
shown that the method is robust, and accurately models param-
eterized frequency responses with a highly dynamic behavior.
Unfortunately, the algorithm is not directly applicable to the
macromodeling of parameterized time-domain responses. The
main difficulty lies in the representation of the multivariate
transfer function, which does not guarantee an overall stability
of the poles. Therefore, a direct evaluation of the multivariate
macromodel for various parameter combinations may lead to
unstable time-domain simulations, which is undesired. The
analytical detection of unstable poles and the enforcement of
stability is a topic which is still open for further research [7].

This paper resolves the stability problem by proposing a
multivariate macromodel representation, which is guaranteed to
be stable for all possible geometrical parameter combinations.
The method starts by computing a univariate time-domain
or frequency-domain macromodel with OVF [8] for various
combinations of a design variable. Stability of each univariate
macromodel can be ensured by means of a simple pole-flip-
ping scheme [9]. These univariate macromodels (referred to
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as nodes) are then combined into a multivariate macromodel
by means of barycentric Lagrange interpolation [10], [11].
Passivity of the parametric macromodel can be enforced by
perturbation of the barycentric weights, provided that the
occurring passivity violations are reasonably small.

II. OVF

OVF is a robust macromodeling technique for the identifica-
tion of a rational transfer function from frequency-domain
responses . It minimizes a weighted linear cost func-
tion by iteratively relocating the transfer function poles using a
Sanathanan–Koerner iteration [8], [12], [13]. Numerical ill con-
ditioning is avoided by using a set of orthonormal rational basis
functions, which are based on a prescribed set of poles. Such
basis functions have the advantage that an implicit weighting
scheme can be applied, which was found to give more reliable
results than an explicit weighting scheme if the prescribed poles
need to be relocated over long distances [14]. At the same time,
it simplifies the enforcement of system stability by means of a
pole flipping scheme. In [15], a time-domain generalization of
OVF is presented, which allows the identification of a transfer
function based on univariate transient input-output port re-
sponses . The idea is based on a time-domain im-
plementation of the vector fitting technique, which is well de-
scribed in the literature [16]. The passivity enforcement of uni-
variate macromodels has been widely studied in the literature,
and several robust techniques are available (see [17]–[19] for
details).

III. PARAMETRIC MACROMODELING

A. Bivariate Frequency-Domain Macromodeling

The goal of this section is to provide a bivariate extension
of the OVF algorithm, which computes a stable parametric
macromodel from simulated frequency responses

, which are parameterized by a certain de-
sign variable over some predefined parameter range. The
challenging task is to find a bivariate transfer function rep-
resentation, which is general enough to model a dynamic
response, while preserving a guaranteed stability of the poles
for all possible values of . Therefore, the frequency-domain
representation of the bivariate transfer function is chosen as

(1)
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where represents the fundamental Lagrange polynomial

(2)

and are stable 1-D fits for various choices of , as com-
puted in Section II (see [8] for details). Since the polyno-
mial has the property that for ,
it is guaranteed that the bivariate model is an exact in-
terpolation of the univariate transfer function nodes . If

is defined as

(3)

and the barycentric weights are chosen as

(4)

then the interpolant can be written in Rutishauser’s
first form of the barycentric interpolation formula [10], where

for , , and

(5)

elsewhere. A more elegant formulation is obtained by dividing
(5) by the corresponding interpolant for constant function 1 and
simplifying , which leads to the second “true” form of the
barycentric interpolation formula

(6)

It is evident that the bivariate transfer function (6) is an
-weighted sum of stable univariate transfer functions, which,

therefore, guarantees stability of the overall macromodel by
construction. It is also observed that the interpolation property
of (6) is preserved for an arbitrary choice of weights , which
results in a rational interpolating function. Since an interpo-
lating function may fluctuate in between the nodes, the weight
vector can be chosen in such way that the error vanishes at
some judiciously chosen set of test points [20]. The
weights can also be chosen such that the rational interpolant
does not have real poles, which may occur on the parameter
range of interest. The reader is referred to [21] for details.

B. Bivariate Time-Domain Macromodeling

A direct application of the inverse Laplace transform to
the frequency-domain bivariate transfer function (6) yields an
equivalent bivariate transfer function in the time domain

(7)

provided that is the inverse Laplace
transform of the univariate frequency-domain transfer function
nodes, and the time-domain relationship between the input
signal and output signal is given by the following convolution:

(8)

The output signal for an arbitrary choice of can easily
be computed by simulating the minimal state-space realization
of all the univariate nodes with the input signal
using MATLAB’s “lsim” function, and by evaluating (8).

The time-domain macromodel (7) can also be obtained di-
rectly from time-domain responses in a com-
pletely analogous way. First, several stable univariate time-do-
main macromodels are computed with time-domain
OVF (see [15]), which are then combined into a stable bivariate
macromodel by barycentric interpolation.

C. Extension to Multivariate Macromodeling

The stable bivariate formulation can easily be general-
ized to the multivariate case by the barycentric interpolation
of lower dimensional macromodels. Consider a set of fre-
quency-domain responses [or time-domain
responses ], which vary along design vari-
ables . An -dimensional model can
then be obtained by the barycentric Lagrange interpolation
of several -dimensional models [or

], which are computed for all values of
for , where represents the number of

nodes in terms of the design variable . This procedure is
repeated in a recursive fashion for of which the
bivariate formulation is the base case [2], [22].

It is then clear that the multivariate parametric macromodel
has a balanced tree-like structure, i.e., a tree of which no leaf is
further away from the root than any other leaf. This implies that
data samples should not be scattered in the design space, but
located on a fully filled, but not necessarily equidistant, rectan-
gular grid. In many cases, this corresponds to the most practical
way how multivariate data samples are organized and computed
by a numerical simulation tool. If it is inconvenient or impos-
sible to structure the data samples this way, one can always re-
sort to the multivariate OVF algorithm [6].
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IV. MULTIPORT SYSTEMS

In the case of multiport systems, the presented methodology
can be applied to model each element of the transfer matrix

separately. In most cases, it is preferable that all el-
ements of the transfer matrix share a common set of transfer
function poles if one evaluates the multivariate macromodel for
fixed values of the parameters . It can be seen from the model
representation (6) that this condition is automatically satisfied
if OVF considers all matrix elements simultaneously to identify
the poles of the univariate macromodel nodes [23].

V. PASSIVITY ENFORCEMENT

In the case of scattering parameters, the exact definition of
passivity in the frequency-domain stipulates that the transfer
matrix of a structure must be unitary bounded

(9)

which leads to the following equivalent condition:

(10)

provided that denotes the singular values of . Pas-
sivity of univariate macromodels has been widely studied, and
robust techniques for the detection and enforcement of passivity
are available in the literature [18], [19]. The following sections
describe a new passivity enforcement technique, which gener-
alizes these concepts to parametric macromodels [24].

A. Passive Multivariate Macromodels

First, a stable bivariate macromodel is computed by
barycentric interpolation of several passive univariate macro-
models for various choices of with .
Since these univariate models are passive, it is certain that the bi-
variate macromodel is passive in the interpolation nodes. How-
ever, this does not guarantee passivity of the overall macro-
model. In order to ensure stability of the time-domain simula-
tions, it is necessary that condition (10) is satisfied for all values
of within a predefined parameter range .
Therefore, it is necessary to detect possible passivity violations
by a dense parameter sweep over [25].

Let us assume that the bivariate macromodel is not passive,
and that the largest passivity violation occurs at frequency
and parameter value . To remove this passivity violation, one
would like to perturb the barycentric weights of the macromodel
in such way that the singular values of

(11)

are unitary bounded. Truncating the diagonal elements of to
yields a modified matrix such that

(12)

In order to compensate the passivity violation, it suffices that the
following conditions hold for each element on row

and column of the transfer matrix :

(13)

It is allowed to linearize (13) by reformulating it as

(14)

Solving (14) for each matrix element of leads to an
undetermined problem of the form with

(15)

(16)

(17)

Hence, it is possible to offset the given passivity violation by
adding the perturbation of the barycentric weights in the
solution vector to the individual weights of the cor-
responding matrix element [see (6)]. While solving the equa-
tions, one can impose additional nonlinear constraints, which
minimize the deviation to the input–output port response of the
macromodel (see [18] and [19] for details). This procedure can
be repeated iteratively until all passivity violations are compen-
sated. In a similar way, several passive bivariate macromodels
can be combined into a trivariate (or multivariate) macromodel,
which is subjected to the same procedure.

The main advantage of the perturbation of barycentric
weights is that this enforcement scheme preserves the interpo-
lation property in the nodes, which means that the accuracy of
the macromodel in the simulated data samples remains unaf-
fected. However, as opposed to residue perturbation techniques,
a modification to the barycentric weights does not guarantee
that the perturbation will be localized to a specific part of the
parameter range [18]. In order to have a good convergence
of the algorithm, this approach should only be applied if the
occurring passivity violations are reasonably small. It is also
noted that perturbed barycentric weights result in a rational
interpolation instead of polynomial interpolation.

VI. EXAMPLE 1: HIGH-SPEED INTERCONNECT

In this example, the frequency response of
a one-port passive lossy transmission line structure is simu-
lated using Agilent Technologies’ EEsof Momentum over the
frequency range of 0.1–20 GHz for four different values of a
normalized loss factor . Each response is
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Fig. 1. Magnitude parametric frequency response of interconnect.

Fig. 2. Zoom Fig. 1 (rotated to right and tilted upward).

approximated by a stable six-pole macromodel using the uni-
variate OVF technique, and passivity of each model is verified
by checking the eigenvalues of a Hamiltonian matrix. A bi-
variate macromodel is obtained by barycentric Lagrange inter-
polation of each univariate macromodel. Since the response has
a smooth variation in terms of the design variable, the barycen-
tric weights are chosen as in (4), which yields a polynomial in-
terpolating function in terms of .

Fig. 1 shows the magnitude of the four frequency responses
(solid lines), and the behavior of the bivariate macromodel at
intermediate values of (dotted lines). It can be seen that the
magnitude of the bivariate model has a smooth continuous be-
havior over the parameter range, which is often close to one.
Fig. 2 shows a zoom of Fig. 1, which is rotated to the right and
tilted upward so that the frequency axis and parameter axis co-
incide (due to the viewing angle). It shows that there are some
small passivity violations in between the nodes. A dense param-
eter sweep over reveals that the maximum passivity violation
occurs at and GHz with a magnitude
of 6.8821 10 . A perturbation of the barycentric weights

Fig. 3. Side view of Fig. 1 before/after passivity enforcement (zoom).

Fig. 4. Front view of Fig. 1 before/after passivity enforcement (zoom).

(as described in Section V) was applied to compensate the vi-
olation, and the singular values threshold was set to 0.99995
(i.e., slightly below 1).

Fig. 3 shows the magnitude of the original and the perturbed
macromodel as a function of , where each line corresponds to
a different frequency between dc and 20 GHz. Fig. 4 shows the
magnitude of the original and perturbed macromodel as a func-
tion of frequency , where each line corresponds to a different
value of with .

Figs. 3 and 4 are, in fact, a zoom of the side view ( axis) and
the front view (frequency axis) of Fig. 1, respectively, which
confirms that passivity is ensured for all frequencies (also out-
side the frequency band), provided that is chosen within the
predefined parameter range. Fig. 5 shows that the maximum de-
viation , which is introduced by the en-
forcement, is well below 60 dB.

Finally, it is noted that perturbation of the barycentric weights
should not be seen as a modification of the bivariate model at a
single data point in the design space, as this would lead to dis-
continuous behavior in the model response. It is easy to see from
(6) that passivity compensation will also affect the response at
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Fig. 5. Absolute error of interconnect introduced by passivity enforcement.

Fig. 6. Rectangular microstrip patch antenna.

other frequencies. This is the reason why a single perturbation
of the weights also resolved the other passivity violations (such
as the one at 4 GHz) at the same time.

VII. EXAMPLE 2: PATCH ANTENNA

In this example, the time-domain behavior of a rectangular
microstrip patch antenna structure is simulated using Agilent
Technologies’ EMDS 3-D simulator. The rectangular patch an-
tenna with length cm and width cm is fed
by a microstrip feedline of width cm, and lays on
a substrate with thickness cm and varying relative
permittivity , as shown in Fig. 6.

The time-domain response of the structure is computed for
six different values of , which are equidistantly spread over
the parameter range of interest. Each node is approximated by
a 48-pole univariate macromodel using the time-domain OVF
algorithm, as described in [15]. Fig. 7 shows the initial transient
behavior of the currents induced to an injected voltage pulse
for different values of . A good correspondence is observed
between the simulated data (dotted lines) and the univariate ra-
tional OVF macromodels (solid lines). All the stable univariate
macromodels are then combined into a bivariate macromodel by
means of barycentric interpolation. As can be seen from Fig. 8,

Fig. 7. OVF approximation of six univariates nodes of patch antenna.

Fig. 8. Bivariate time-domain macromodel of patch antenna.

the macromodels exhibits a smooth continuous behavior for ar-
bitrary values of , which are selected in between the nodes.
Fig. 9 shows that the time-domain macromodel can also be eval-
uated in the frequency domain by computing the spectral re-
sponse of each univariate node, and evaluating the barycentric
interpolation formula (6).

VIII. EXAMPLE 3: 3-D TRANSMISSION LINE

The presented technique is used to model the reflection co-
efficient of a lossless exponential tapered transmission line
[26], [27] that is terminated with a matched load, as shown in
Fig. 10, where and represent the refer-
ence impedance and the load impedance, respectively. A mul-
tivariate macromodel is computed as a function of the varying
relative dielectric constant and varying line length

cm cm over the frequency range of 1 kHz–3 GHz.
Fig. 11 shows the frequency response of the trivariate structure
for a fixed value of , while Fig. 12 shows the variation of
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Fig. 9. Bivariate frequency-domain macromodel of patch antenna.

Fig. 10. Exponential tapered microstrip transmission line [27].

Fig. 11. Reflection coefficient � for � � �.

the response for an increasing line length . The initial data is
computed over a sparse grid of samples,
and a set of 250 frequency-dependent univariate macromodels

is calculated by vector fitting. All the models that corre-
spond to the same value of are interpolated as a function of
into a bivariate macromodel , and these bivariate macro-
models are consecutively interpolated as a function of into a

Fig. 12. Reflection coefficient � for � � �� �� �� �� �� cm.

Fig. 13. Histogram: error distribution over 200 000 validation samples.

trivariate macromodel . The overall macromodel is
evaluated and compared over a dense set of 20 100 100
validation samples, and the distribution of the absolute error
is shown by a histogram in Fig. 13. It is confirmed that an
overall good approximation is obtained, as the maximum error
is bounded by 82.64 dB. These results illustrate that the pro-
posed method is accurate and applicable to model dynamical
responses, which depend on multiple design parameters.

IX. CONCLUSIONS

A new multivariate macromodeling technique has been
presented, which computes accurate parametric macromodels
from time-domain and frequency-domain responses. The
method starts by computing stable univariate macromodels
using OVF for various combinations of a design variable. These
univariate macromodels are then combined into a multivariate
macromodel by means of barycentric Lagrange interpolation.
Stability of the transfer function poles is always guaranteed,
and a fast post-processing algorithm is introduced for passivity
enforcement.
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