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Fast Parametric Macromodeling of Frequency
Responses Using Parameter Derivatives

Francesco Ferranti, Dirk Deschrijver, Luc Knockaert, Senior Member, IEEE, and Tom Dhaene, Senior Member, IEEE

Abstract—This letter presents a generalization of the mul-
tivariate Vector Fitting technique that includes parameter
derivatives in the macromodeling process. The computational cost
to simulate partial derivatives in terms of the parameters is often
substantially lower than the simulation cost of additional data
samples. An example shows that the inclusion of derivatives can
be useful to reduce the required amount of data samples, while
preserving the accuracy of the results.

Index Terms—Least-squares, parametric macromodels, rational
functions, surface approximation, vector fitting.

I. INTRODUCTION

I NCREASING integration levels in microwave devices
and higher signal speeds require accurate modeling of

previously neglected interconnection effects during circuit and
system simulations. Accurate prediction of these effects is
fundamental for successful design and involves the solution
of large systems of equations which are often prohibitively
expensive to solve. For real-time design space exploration
and fast optimization, there is a significant need for accurate
broadband parametric macromodels that approximate the fre-
quency-domain behavior of a system in terms of several design
variables by a rational analytic function.

Recently, a robust multivariate extension of the Orthonormal
Vector Fitting technique was introduced in [1]. This method
combines the use of an iterative least squares estimator and or-
thonormal rational functions which are based on a prescribed
set of poles. It was shown that the method is able to compute
accurate parametric macromodels, based on parameterized fre-
quency responses which exhibit a highly dynamic behavior.

This letter generalizes this technique, to include parameter
derivatives in the modeling process. Parameter derivatives pro-
vide additional information about the underlying system and can
often be simulated at a significantly lower computational cost
than additional samples [2]–[5]. The presented algorithm can
exploit this information to compute a parametric macromodel in

Manuscript received May 30, 2008; revised August 18, 2008. Current version
published December 04, 2008. This work was supported by the Research Foun-
dation Flanders (FWO).

F. Ferranti, L. Knockaert, and T. Dhaene are with the Department of Infor-
mation Technology (INTEC), Ghent University-IBBT, Ghent 9000, Belgium
(e-mail: francesco.ferranti@intec.ugent.be; luc.knockaert@intec.ugent.be;
tom.dhaene@intec.ugent.be).

D. Deschrijver is with the Department of Information Technology (INTEC),
Ghent University-IBBT, Ghent 9000, Belgium. He is also with the Research
Foundation Flanders (FWO) Vlaanderen, Brussels B-1000, Belgium (e-mail:
dirk.deschrijver@intec.ugent.be).

Digital Object Identifier 10.1109/LMWC.2008.2007687

a reduced amount of time. An example illustrates the increased
efficiency that can be obtained. For ease of notation, the new
macromodeling algorithm is only described for bivariate sys-
tems. Of course, the full multivariate formulation can be derived
in a completely similar way.

II. PARAMETRIC MACROMODEL

It was proposed in [1] to represent the parametric macro-
model as the ratio of a bivariate numerator and denominator

(1)

where is the complex frequency variable and is a real
design variable. The maximum order of the corresponding basis
functions and is denoted by and respectively.
Based on a set of data samples , the al-
gorithm pursues the identification of the model coefficients
and of numerator and denominator in (1).

III. ITERATIVE ALGORITHM

In the first iteration step of the algorithm , Levi’s
cost function [6] is minimized to obtain an initial guess of the
coefficients. In successive iteration steps , the
Sanathanan–Koerner cost function is minimized [7], [8], which
uses the inverse of the previously estimated denominator

(2)

as an explicit weight factor to the least-squares equations. All
details about this procedure are well reported in [1]. This letter
proposes a generalized Sobolev space cost function, that takes
derivatives of the parameter variables into account [9], [10]

(3)

This cost function in (3) is minimized for , where

(4)

(5)

provided that and represent the order of the partial
derivatives in and respectively. Although it is possible to
include cross derivatives in a similar way, this procedure is not
described for the sake of simplicity. In order to avoid the trivial
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Fig. 1. Exponential tapered transmission line [16].

null solution of the least squares problem (3), the constant term
of the denominator in (1) is set to unity. Each equation

is then split in its real and imaginary parts, to ensure that the
model coefficients , are real. It is also noted that the
numerical accuracy of the results can be improved by scaling
each column to unity length [11]. To ensure that the poles of
the parametric macromodel are located in the left-half plane,
some stability conditions can be verified if needed [12].

IV. INCLUSION PARAMETER DERIVATIVES

The following formula describes a notational shorthand
for Leibniz identity, which generalizes the product rule for ex-
pressing higher-order derivatives of products of functions

(8)

provided that and are arbitrary functions that depend
on the dummy variable . An application of the Leibniz identity
to (4) and (5) yields the following equations:

(6)

(7)

represents the produt of two functions, then the Leibniz
identity is applied in a recursive fashion.

It is noted that the derivatives of , and
with respect to the parameters and are also needed

to solve (8). The derivatives of and (as de-
fined in (1)) are directly based on the derivatives of the basis
functions and , which are reported in the next sec-
tion. The weighting function can be considered as a
composition of the reciprocal function and , such
that the derivatives can be computed using the Faà di Bruno
formula. This formula decomposes the compound expression in
terms of Bell polynomials [13].

V. GENERALIZATION OF THE BASIS FUNCTIONS

A. Frequency-Dependent Basis Functions

A set of partial fractions is chosen, which are based
on a prescribed set of stable poles , provided that

. These poles are selected as complex conjugate pairs
with small real parts and the imaginary parts linearly spaced
over the frequency range of interest [11]. A linear combination
of two partial fractions is formed to ensure that both
and are real-valued functions

(9)

(10)

If the following auxiliary function is defined as:

(11)

then the derivatives with respect to are given by

(12)

(13)

B. Parameter-Dependent Basis Functions

The parameter-dependent basis functions are also ra-
tional functions, which are chosen in partial fraction form as a
function of . These basis functions are based on a prescribed
set of starting poles , which are chosen as com-
plex pairs with small real parts of opposite sign and imaginary
parts linearly spaced over the parameter range of interest, pro-
vided that . A linear combination of two partial frac-
tions is formed to ensure that and are strictly
real functions by construction [14]

(14)

(15)

If the following auxiliary function is defined as

(16)

then the derivatives with respect to are given by

(17)

(18)

VI. EXAMPLE: TAPERED TRANSMISSION LINE

The proposed technique is used to model the reflection co-
efficient of a lossless exponential tapered transmission line
[15], [16] that is terminated with a matched load, as shown in
Fig. 1, where and represent the refer-
ence impedance and the load impedance, respectively. The rel-
ative dielectric constant is chosen equal to 2.

A bivariate parametric macromodel is computed as a func-
tion of varying line length over the fre-
quency range [1 kHz–8 GHz]. The desired model accuracy is
set to 60 dB, which corresponds to three significant digits. The
number of poles of the macromodel is set to 10 for the length pa-
rameter and 18 for the frequency. If no parameter derivatives are
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Fig. 2. Reflection coefficient � of macromodel using first order derivatives.

Fig. 3. Absolute error of macromodel using first order derivatives.

used, at least 46 50 uniformly distributed data samples are re-
quired to obtain the desired accuracy of the macromodel. When
the first-order derivatives for length and frequency parameters
are also included, only 17 18 data samples are needed to ob-
tain a similar accuracy.

The response of the parametric macromodel is evaluated over
a dense set of 80 200 data samples, as shown in Fig. 2. Fig. 3
confirms that an overall good agreement is observed between
the macromodel and the set of validation samples.

VII. CONCLUSION

A generalization of the multivariate Vector Fitting technique
[1] that includes parameter derivatives is presented, to compute
parametric macromodels from frequency response data. Partial
derivatives can often be obtained at a significantly lower com-
putational cost than additional samples and yield useful infor-
mation in the fitting process. Numerical results show that the in-
clusion of parameter derivatives can reduce the required amount
of samples, while preserving the model accuracy.
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