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Abstract 

The paper deals with the numerical validation, 

performance evaluation and robustness assessment of a 

procedure for the direct identification of passive transfer 

matrices based on convex programming. Validation is pursued 

by producing data sets from lumped multiport systems with 

random parameters (passive, non passive, and possibly 

affected by random noise), then evaluating the identification 

ability of the considered method. Results demonstrate how the 

considered approach satisfactorily covers the passive 

identification of a large class of data sets, even in presence of 

significant passivity violations or noise flawed data, at average 

accuracies comparable with non passive identifications 

obtained with standard Vector Fitting. 

Introduction 

A large number of electrical and electronic systems consist 

of linear distributed passive electromagnetic structures 

interacting with lumped elements (possibly non linear). Their 

system level analysis and design is largely based on circuit 

simulation. It is well known in literature how the passivity of 

the identified sub-systems should be guaranteed in order to get 

stable time domain system level simulations [1-3]. Also, some 

theoretical conditions are known for checking/enforcing 

passivity on rational models [4-6]. Several schemes have been 

presented for enforcing passivity “a-posteriori” with 

perturbation approaches, after a sufficiently accurate but non 

passive identification has been reached. Other schemes base 

on “a-priori” constraining passivity of the model during the 

identification process. A new procedure for identifying 

guaranteed passive models, originally named Positive Fraction 

Vector Fitting (PFVF), has been introduced in [7] (for the 

SISO case) and fully described (including generalization to 

MIMO systems) in [8], showing to work satisfactorily in 

practical cases of technical interest. Its formulation is briefly 

resumed in next section. 

In this paper we validate numerically such passive 

identification scheme, with the analysis of a large number of 

frequency domain data for arbitrary lumped multiport systems. 

It is shown that the considered approach can be considered at 

present sufficiently robust in a large set of cases, while being 

accurate in the same order of standard “non passive” VF 

identifications. 

A brief resume about the formulation 

The “Positive Fraction” approach to passive identification 

of lumped multiport is based on three major facts: 

1) a guaranteed passive system can be obtained as an 

expansion of Np pole-residue passive terms as: 
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where Rn are ⋅M M  (complex) residue matrices with M the 

number of ports; 

2) passivity constraints on each pole residue term (or couple 

of conjugate terms) can be written in a frequency 

independent way as: 
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where ≥  indicates “positive semi definite” in matrix context; 

3) it is possible to identify residues as a convex optimization 

problem,  after the poles have been accurately estimated by 

means of standard Vector Fitting (so that constraints 2 

become “linear”) 
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where �H  indicates the data. 

After recognizing the problem as convex optimization, 

which guarantees a-priori the passivity constraint (2), a 

suitable software package can be used to solve it. In our 

procedure the solution is found with CVX software [9-10] 

which automatically transforms (3) with constraints (2) into 

semi-definite programming and calls the relevant solution 

routines. 

General properties of the above formulation are fully 

analyzed in [8]. Here, we just mention the trade off between 

sub-optimality of the solutions, as compared  to Positive Real 

Lemma based formulations, versus a significantly reduced 

141978-1-4244-7609-1/10/$26.00 ©2010 IEEE



computational cost. Moreover the expansion (1) leads directly 

to “concretely passive” synthesis schemes. 

The validation scheme 

Numerical validation of the considered procedure can be 

pursued by generating a general (lumped) multiport data set, 

eventually with intrinsic passivity violations and/or flawed by 

a certain level of random noise, to which we apply the passive 

identification scheme under investigation.  

The data set generator is built on the basis of a general M-

port synthesis scheme of dynamic order Np, where random 

parameters are assigned (with possible passivity violations) in 

a physical way (by setting R, L, C, coefficients). Random noise 

is added at fixed % level after the describing frequency 

matrices are generated. Based on this data generation scheme, 

a large number of identifications have been carried out in 

order to validate the considered procedure with respect to: 

� numerical stability, accuracy and convergence 

� order reduction ability 

� passivity violation recovery ability 

� robustness in presence of noisy data 

Although in order to fully evaluate the quality of a certain 

identification, a complete comparison of the data vs. fitted 

curve is necessary. A useful error index can be defined as: 
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where Ns is the total number of (frequency) samples and ⋅
F

indicates the Frobenius norm. Moreover, as long as the data 

and the VF identified model can present frequency intervals 

with passivity violations, it is useful defining the parameter ψ

as the % of frequency intervals where violations occur referred 

to the overall interest frequency interval. 

Some selected study cases 

We report here a selection of cases showing the 

comparison of a standard VF identification (without any 

passivity enforcement) vs. the considered Positive Fraction 

Vector Fitting approach. This comparison is of conceptual 

more than practical importance, since in all a-posteriori 

enforcement technique there is some unavoidable degradation 

of accuracy in the final passive model as compared to the 

initial non passive VF identification. 

case a): 2x2 120 poles passive data (with VF passivity 

violations). 

The first example concerns a very common situation, where 

although the original data are passive, the VF identification 

lead to a non passive model. The example consist of a 120 

poles passive two ports (its passivity can be checked by the 

eigenvalues test on matrix Y as shown in figure 1), identified 

with same number of poles. Identification results are shown in 

figure 2 where the standard VF identification and the PFVF 

identification of ( )11Y � and ( )12Y �  elements are compared. 

First observe how, as it quite often happens, the VF 

identification introduces quite large number of passivity 

violations in the identified model, even in presence of purely  
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FIGURE 1: data and Re{Y(ω)} eigenvalues for case a) 
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FIGURE 2: identifications of ( )11Y � and ( )12Y � for case a) 

passive data without noise. The PFVF identification is able to 

fully recover this problem at substantially unchanged 

accuracy, as shown from the error curves. Moreover it can be  

noted that the PFVF error curve appear to be “smooth” as 

compared to the VF one in the regions where violations occur 

in VF identification. Main merit figures of this case, as for the 

following cases, are summarized in table I at the end of the 

section. 

case b): 2x2 120 poles noisy data. 

This example takes into account the presence of noise on 

the data set by adding a 2% random noise to a passive data set. 

Also in this case the VF identification introduces some 

passivity violations (see figure 3) which are easily recovered 

by the PFVF algorithm, with reasonably similar accuracy (see 

table I at the end of this section for details). 

case c): 2x2 80 poles non passive data. 

We consider now the case of non passive data. A 80 poles 2-

port with data passivity violations range ψ D =3 % of the entire 

frequency range. First note that VF identification broadens up 

to ψVF =35.6% the violation band amplitude (figure 4). The 

presence of violations in the data reflect also in the 

degradation of accuracy for VF as compared to previous cases. 

The accuracy achieved in both identifications is comparable, 

but favorable to PFVF (see table I for details ). 
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FIGURE 3: data and identifications for case b)
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FIGURE 4: data and identifications for case c) 

case d): 2x2 120 poles order reduction to 40 poles. 

A further compared analysis has been carried out about the 

order reduction ability of the PFVF. The example we consider 

relates to noisy data (2%) from a 120 poles 2-port with no 

passivity violations, identified with 40 poles system both with 

VF and PFVF (figure 5). Both algorithms are able to fit the 

data with 40 poles at an acceptable accuracy, and the passivity 

violations introduced by VF are easily recovered by the PFVF. 

(see table I for details ). 

case e): 4x4x42 poles. 

In order to evaluate the performances of the PFVF at 

increasing number of variables an example has been carried 

out for a 4x4 multiport with 44 poles with passivity violations 

in the data for a ψ D =2% of the interest band. Results are 

shown in figure 6 and main figures in table I. It is apparent 

how the increased complexity does not change substantially 

the order of accuracy reached at comparable violation interval 

widths. (see table I for details ). 

Some statistical analysis 

In this section we briefly report the results of a larger numbers 

of identifications to give some statistical insight on two issues 

concerning   validation   of   the   procedure,  namely  the  data 
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FIGURE 5: data and identifications for case d) 
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FIGURE 6: data and identifications for case e) 

case
data 

poles 

ident.

poles

data

noise

error 

VF    PFVF 

ψψψψ=%viol. band 

Data        VF 

a) 120 120 0% 0.035 0.034 0 12.4

b) 120 120 2% 0.059 0.08 0 11.4

c) 80 80 0% 0.095 0.069 3.0 35.6

d) 120 40 1% 0.033 0.071 0 15.6

e) 44 44 0% 0.055 0.039 1.6 30.2

Table I - Major merit figures for the considered study cases 

passivity violations recovery ability and the sensitivity to data 

noise. 

In order to investigate the first issue it is of some help to 

define some measure of the passivity violation “level”, when 

occurring. As long as passivity violations can be detected, at 

each frequency ω, from the presence of negative eigenvalues 

in the { }Re ( )ωY  matrix, we define as a measure of the 

maximum violation level the index ν as: 

{ }

{ }

min( (Re ( ) ))
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max( (Re ( ) ))

ω
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After definition (5) we firstly show the comparison of 

results of 200 identifications of a 2x2-40 poles cases with 

passivity violations in (not noisy) data (figure 7). By 

considering the linear regressions it appears evident how the 

error in the identification of non passive data increases linearly 

(in logarithmic scale) with the violation level defined by (5). 

Moreover the PFVF error is on average better than VF 

identifications, this difference being increasing as function of 

violation level. A similar averaged behavior is obtained if the 

error is plotted vs. the parameter ψ D  previously defined. 

The second issue, namely sensitivity to noise in data, has 

been investigated over a set of 240 identifications of a 2x2-40 

poles cases, with increasing level of noise from 2.5% to 10%. 

The results are reported in figure 8. Here the performance of 

VF and PFVF, although similar, are in inverse order compared 

to the previous case. It can be argued that this result is due to 

the influence of noise on the VF system poles identification, 

that cannot be recovered by PFVF in the final residue 

identification step. 
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Conclusion and perspectives 

The presented validation procedure shows firstly how the 

constraints on single terms in the expansion do not worsen (on 

average) the identification capability on passive lumped data 

set as compared to pure VF, which often give same 

identification accuracies but wit large violation intervals. 

The identification of non passive data sets for significant 

violations (both as level and width of violation intervals) is 

very successful at high accuracies in a large number of data 

sets. On the other hand the procedure shows a moderate 

sensitivity to noise on data, higher on average than pure VF. 

Although the convex optimization approach limits the 

practical use to moderate complexity problems (number of 

ports x number of poles), the Positive Fraction formulation 

reduces significantly the order of the problem as compared to 

Positive Real Lemma, giving at the same time advantages for 

concretely passive synthesis schemes. 
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