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SUMMARY

Orthonormal vector fitting is a robust method for broadband macromodeling of frequency domain
responses. The use of orthonormal rational basis functions makes the conditioning of the system equations
less sensitive to the initial pole specification when compared with the classical Vector Fitting procedure.
This paper presents a time domain generalization of the technique to compute broadband rational
macromodels from transient input–output port responses. The efficacy of the approach is illustrated by two
numerical examples. Copyright r 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Reliable synthesis of compact transfer function models is of crucial importance for accurate
system-level simulations [1]. The identification of such macromodels from frequency domain
measurements or simulations is not a trivial task, even when linear systems are considered [2–5].
Nevertheless, there is an ongoing need for robust and efficient macromodeling techniques that
are able to fit resonant frequency responses with a high model order [6]. Vector Fitting (VF) is
one of the most popular methods, and has been widely applied in the power systems community
[7–10]. Essentially, it minimizes a weighted linear cost function by iteratively relocating a
prescribed set of transfer function poles using a Sanathanan–Koerner iteration [11–13].
Numerical ill-conditioning is avoided by using a set of partial fraction basis functions that are
based on a well-chosen set of prescribed poles. Such rational basis functions have the advantage
that an implicit weighting scheme can be applied, as described in [14]. The implicit weighting
was found to give more reliable results if the prescribed poles need to be relocated over long
distances, and is therefore preferable.

In [15], it was shown that the method can achieve a higher robustness if the partial fraction
basis is replaced by a set of orthonormal rational functions, leading to the orthonormal vector
fitting (OVF) technique. Using these orthonormal rational functions, the conditioning of the
system equations becomes less sensitive to the initial pole specification, and accurate models can
be computed in fewer iterations. This improves the robustness of the method and may lead to a
reduction in the overall computation time. It was shown in [16] that orthonormalization can
resolve rank deficiency problems if some of the poles become relocated arbitrarily close during
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the iterations. Such situations occur frequently (although not exclusively) when modeling
transfer functions with poles of higher-order multiplicity [17]. The orthonormalization can also
lead to more accurate results if exact interpolation problems are solved using Gaussian
elimination instead of a rank-revealing QR decomposition [18]. A thorough comparison with
the standard partial fraction basis is reported in [14], and it is concluded is that ortho-
normalization is preferable since it leads to comparable or better results at the expense of a
negligible additional computational cost.

The use of these orthonormal basis functions has been succesfully adopted in several
applications domains, such as the macromodeling of parameterized frequency responses [19–21],
the macromodeling of z-domain responses [22–26], and the modeling and analysis of
underground cables and overhead transmission lines [27]. It can be used in conjuction with
various passivity enforcement schemes [28–34].

In this paper, a generalization of the OVF approach is presented, which allows the identi-
fication of a broadband transfer function based on transient input–output port responses [35].
The idea is based on a time domain implementation of the VF technique, as was shown in [36].
This paper illustrates that the advantages of orthonormalization and time domain identification
can be combined, leading to a novel procedure. It is found that this procedure is robust for a
wider range of initial pole specifications, and that the additional computational cost is negligible
when compared with the standard time domain VF approach. The effectiveness of the proposed
technique is illustrated by several numerical examples [37, 38].

2. MODEL REPRESENTATION

The transfer function R(s) is defined as the ratio of a numerator N(s) and denominator D(s)

RðsÞ ¼
N ðsÞ
DðsÞ

¼

PP
p¼1 cpFpðs; aÞ

~c01
PP

p¼1 ~cpFpðs; aÞ
ð1Þ

Based on the measured or simulated frequency response fsk ;H ðskÞg
Ks
k¼0 of a microwave

component, the coefficients of the macromodel should be estimated in such a way that the least-
squares distance between the macromodel and the data is minimized [39]

arg min
cp ;~cp

XKs

k¼0

N ðskÞ
DðskÞ

� H ðskÞ

����
����
2

ð2Þ

In the frequency domain OVF technique, it was shown that a numerically robust procedure is
obtained when the numerator and denominator are expanded in a basis of Muntz–Laguerre
orthonormal rational functions Fpðs; aÞ [40]. These basis functions are based on a prescribed set
of stable poles a ¼ f�apg

P
p¼1, which are real or occur in complex conjugate pairs. They are

chosen according to a heuristic scheme [7].
If �ap corresponds to a real pole, then the orthonormal basis functions Fpðs; aÞ are defined

as follows:

Fpðs; aÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2<eðapÞ

p
s1ap

Yp�1
j¼1

s� a�j
s1aj

 !
ð3Þ

and a linear combination of two basis functions is formed if two poles �ap ¼ �a�p11 form a
complex conjugate pair

Fpðs; aÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2<eðapÞ

p
ðs� jap jÞ

ðs1apÞðs1ap11Þ

Yp�1
j¼1

s� a�j
s1aj

ð4Þ

Fp11ðs; aÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2<eðapÞ

p
ðs1jap jÞ

ðs1apÞðs1ap11Þ

Yp�1
j¼1

s� a�j
s1aj

ð5Þ
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It can be shown that these basis functions are orthonormal with respect to the following inner
product (1pm, npP):

FmðsÞ;FnðsÞh is¼
1

2pi

Z
iR
FmðsÞF�nðsÞ ds ð6Þ

3. TRANSFER FUNCTION IDENTIFICATION

3.1. Levi’s estimator

The goal of the frequency domain identification process is to identify the coefficients cp and ~cp in
(1) such that the complex fitting error is minimized in a least-squares sense. Levi’s linear
approximation of this non-linear identification problem can be obtained by solving the
following set of equations for all the discrete frequencies fskg

Ks
k¼0 [41]:

arg min
cp ;~cp

XKs

k¼0

jN ðskÞ � DðskÞH ðskÞj
2 ð7Þ

It is known that Levi’s estimator is biased, and therefore it does not guarantee convergence to
the true solution of the identification problem [39]. In order to relieve the unbalanced weighting,
a Sanathanan–Koerner iteration is applied [11].

3.2. Sanathanan–Koerner iteration

In successive iteration steps ðv ¼ 0; . . . ; V Þ, the model coefficients cðvÞp and ~cðvÞp can be updated
iteratively by minimizing the Sanathanan–Koerner cost function [11] that uses the previously
estimated denominator as an inverse weight to the least-squares equations. In the first step, (8)
reduces to (7) since D(�1)(s)5 1.

min
cðvÞp ;~c

ðvÞ
p

XKs

k¼0

N ðvÞðskÞ
Dðv�1ÞðskÞ

�
DðvÞðskÞH ðskÞ

Dðv�1ÞðskÞ

����
����
2

ð8Þ

In the classical Sanathanan–Koerner formulation, the coefficients cðvÞp and ~cðvÞp of N ðvÞðsÞ and
DðvÞðsÞ are estimated, provided that each equation of the least-squares matrix is given an explicit
frequency-dependent weighting 1=Dðv�1ÞðsÞ as shown in (9) and (12). The VF and OVF
algorithms perform this weighting in an implicit way, by estimating the coefficients d ðvÞp of
N ðvÞðsÞ=Dðv�1ÞðsÞ and the coefficients ~d ðvÞp of DðvÞðsÞ=Dðv�1ÞðsÞ instead, as shown in (11) and (14).
It follows that multiplication by an explicit frequency-dependent weighting using the initial
poles is equivalent to iterative pole relocation without weighting. Unstable poles are flipped into
the left half plane by inverting the sign of their real parts:

N ðvÞðsÞ
Dðv�1ÞðsÞ

¼
1

Dðv�1ÞðsÞ

XP

p¼1

cðvÞp Fpðs; aÞ ð9Þ

¼

QP
p¼1 ðs1apÞ

QP�1
p¼1 ðs1zðvÞp;nÞQP

p¼1 ðs1zðv�1Þp;d Þ
QP

p¼1 ðs1apÞ
ð10Þ

¼
XP

p¼1

d ðvÞp Fpðs; z
ðv�1Þ
d Þ ð11Þ

DðvÞðsÞ
Dðv�1ÞðsÞ

¼
1

Dðv�1ÞðsÞ
~cðvÞ0 1

XP

p¼1

~cðvÞp Fpðs; aÞ

 !
ð12Þ
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¼

QP
p¼1 ðs1apÞ

QP
p¼1 ðs1zðvÞp;d ÞQP

p¼1 ðs1zðv�1Þp;d Þ
QP

p¼1 ðs1apÞ
ð13Þ

¼ ~d ðvÞ0 1
XP

p¼1

~d ðvÞp Fpðs; z
ðv�1Þ
d Þ ð14Þ

It was shown in [14] that implicit weighting often provides a better numerical conditioning if
the weighting factor 1=Dðv�1ÞðsÞ has a large dynamic variation over the frequency range of
interest. The reason is that the conditioning usually improves in successive iterations as the poles
are being relocated to better positions. It is also noted that some additional improvements are
obtained by scaling each column of the least-squares equations to unity length as in [18]. The
convergence of this pole-relocation process is typically obtained in a few iterations provided that
the initial set of prescribed poles a is well chosen [7].

3.3. Partial fraction representation

In the final iteration (v 5V), the transfer function can be defined as the ratio of (11) and (14)

RðT ÞðsÞ ¼

PP
p¼1 d ðV Þp Fpðs; z

ðV�1Þ
d Þ

~d ðV Þ0 1
PP

p¼1
~d ðV Þp Fpðs; z

ðV�1Þ
d Þ

ð15Þ

It is clear that (15) can be simplified by cancelling out the relocated basis function poles zðV�1Þd .
Therefore, it follows that the poles of the transfer function are essentially the zeros of (14) at
iteration step V. Based on the minimal state–space realization of DðV ÞðsÞ=DðV�1ÞðsÞ,

sX ðsÞ ¼AX ðsÞ1BU ðsÞ

Y ðsÞ ¼CX ðsÞ1DU ðsÞ
ð16Þ

the poles zðV Þd of the final transfer function RðV ÞðsÞ can then be found by solving the eigenvalues of
A�BD�1C [42]. More details about the construction of this realization are well described in [14].
Once the poles are known, the transfer function can easily be represented as a pole-residue
model, by solving the residues gp as a linear approximation problem:

min
gp

XKs

k¼0

XP

p¼1

gp

sk1zðV Þp;d

� H ðskÞ

�����
�����
2

ð17Þ

Such a rational function representation can easily be realized as a SPICE equivalent
circuit [43, 44].

4. TIME DOMAIN ALGORITHM

4.1. Time domain cost function

It is seen that the nonlinear cost function (2) can be written in terms of an input signal U(s) and
the corresponding output signal Y(s), leading to the following equivalent expression:

arg min
cp ;~cp

XKs

k¼0

N ðskÞ
DðskÞ

�
Y ðskÞ
U ðskÞ

����
����
2

ð18Þ

¼ arg min
cp ;~cp

XKs

k¼0

N ðskÞU ðskÞ
DðskÞU ðskÞ

�
DðskÞY ðskÞ
DðskÞU ðskÞ

����
����
2

ð19Þ
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The time domain identification algorithm minimizes a different nonlinear cost function [36]

arg min
cp ;~cp

XKs

k¼0

N ðskÞ
DðskÞ

U ðskÞ � Y ðskÞ

����
����
2

ð20Þ

¼ arg min
cp ;~cp

XKs

k¼0

N ðskÞU ðskÞ
DðskÞ

�
DðskÞY ðskÞ

DðskÞ

����
����
2

ð21Þ

Nevertheless, it turns out that (21) is a good choice for time domain identification: if one
transforms it to the time domain using the inverse Laplace transformation

f ðtÞ ¼L�1F ðsÞ ¼
1

2pi

Z s1i1

s�i1
F ðsÞest ds ð22Þ

then it becomes clear that this alternative cost function (21) minimizes the difference between the
output signal y(t) and the transient response of the model, due to the injected input signal u(t)

arg min
cp ;~cp

XKt

k¼0

L�1 N ðsÞ
DðsÞ

� �
? uðtkÞ � yðtkÞ

����
����
2

: ð23Þ

It is noted that (21) is nonlinear in terms of the model coefficients, and therefore a similar
iterative procedure is used as in the frequency domain. In the first iteration step (v 5 0), a linear
approximation of (21) is obtained by assuming that D(sk)5 1 in the denominator. In successive
iteration steps (v ¼ 1; . . . ; V ), the previously estimated denominator is used as an inverse weight
to the least-squares equations. This leads to a linear cost function that is similar, but not
equivalent, to Levi’s (7) and Sanathanan—Koerner’s (8) cost function in the frequency domain,
since the weighting factor 1=U ðskÞ is omitted

min
d ðvÞp

~dðvÞp

XKs

k¼0

N ðvÞðskÞU ðskÞ
Dðv�1ÞðskÞ

�
DðvÞðskÞY ðskÞ

Dðv�1ÞðskÞ

����
����
2

ð24Þ

It can easily be transformed to the time domain by applying the inverse Laplace transform to (24)

min
d ðvÞp

~d ðvÞp

XKt

k¼0

L�1 N ðvÞðsÞ
Dðv�1ÞðsÞ

� �
? uðtkÞ �L�1 DðvÞðsÞ

Dðv�1ÞðsÞ

� �
? yðtkÞ

����
����
2

ð25Þ

If fpðt; z
ðv�1Þ
d Þ denotes the Inverse Laplace Transform of Fpðs; z

ðv�1Þ
d Þ, then (25) is equivalent to

min
dðvÞp

~d ðvÞp

XKt

k¼0

XP

p¼1

d ðvÞp ðu ? fpðtk ; z
ðv�1Þ
d ÞÞ �

XP

p¼1

~d ðvÞp ðy ? fpðtk ; z
ðv�1Þ
d ÞÞ � ~d ðvÞ0 yðtkÞ

�����
�����
2

ð26Þ

The fact that no explicit expression is provided for these basis functions is of no consequence,
because (26) only needs the convolution of these functions with the input and output signals u(t)
and y(t). To compute the filtered signals u ? fpðtÞ or y ? fpðtÞ, the state–space realization of the
orthonormal basis functions Fp is simulated with input u(t) or y(t) (using MATLAB’s function
lsim), respectively. The application of (26) to the time domain samples ftk ; uðtkÞ; yðtkÞg

Kt

k¼0 leads
to a set of equations which are linear in terms of the coefficients d ðvÞp and ~d ðvÞp . Using these
coefficients and the state–space realization of the basis functions fp (which is equivalent to the
realization of Fp), the transfer function (15) can be constructed [15]. Based on (15), the poles zðT Þd
of the frequency domain transfer function are found by solving an eigenvalue problem. Once the
poles are known, the final transfer function is obtained by solving the coefficients gp as a linear
problem.

min
gp

XKt

k¼0

XP

p¼1

gp u ? e�zðT Þp;d tk
� �

� yðtkÞ

�����
�����
2

ð27Þ
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4.2. Orthonormality considerations

In the time domain, the basis functions fpðtÞ are orthonormal with respect to the time domain
inner product (1pm, npP)

hfmðtÞ;fnðtÞit ¼
Z 1
0

fmðtÞfnðtÞ dt ð28Þ

Since the Laplace transform is a unitary transformation from the time domain to the
frequency domain, this implies that

hLfmðtÞ;LfnðtÞis ¼ hfmðtÞ;fnðtÞit ð29Þ

and

hL�1FmðsÞ;L�1FnðsÞit ¼ hFmðsÞ;FnðsÞis ð30Þ

It is noted that the basis functions (3)–(5) are obtained by a Gram–Schmidt orthonormalization on
a set of partial fractions f1=ðs1apÞg

P
p¼1, provided that the poles f�apg

P
p¼1 are all stable (i.e.

located in the left half of the complex plane). Therefore, a Gram–Schmidt orthonormalization on
the set of exponentials fe�aptgP

p¼1 in the time domain will yield the inverse Laplace transform of the
frequency domain basis functions (3)–(5). It follows that the relevant orthonormal time domain
functions fpðtÞ are obtained by applying the inverse Laplace transform to FpðsÞ, as in (26) [45].

5. EXAMPLE: POWER BUS STRUCTURE

The time domain identification algorithm is applied to calculate the transfer function of a
passive power bus structure [46], based on the transient input and output signal as partially
shown in Figure 1. The system is excited with a Gaussian pulse, which is centered at t5 0.6 ns,
with a width of 0.2 ns and a height of 1 in normalized units. Figure 2 shows the frequency
response as a parametric curve in function of the frequency variable s (Smith Chart).

5.1. Numerical results

A suitable set of 100 starting poles is chosen as proposed in [14]

�ap ¼� ap1bpi; �ap11 ¼ �ap � bpi

ap ¼ubmax

ð31Þ
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Time [ns]

Output signal y(t)
Input signal u(t)

Figure 1. Power bus: Input and output signal of data over interval [0–30 ns].
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where the imaginary parts bp are linearly distributed over the frequency range [0–3GHz], and
u50.01. The parameter u is chosen sufficiently small such that the initial poles result in a well-
conditioned least-squares matrix. The distribution of the poles over the entire frequency range reduces
the probability that poles must be relocated over long distances. It is clear that other prescribed pole-
location schemes are also possible, however, they often require more pole-relocation iterations.

Using the set of prescribed poles (31), the weighted linear cost function (25) is solved
iteratively, and updated estimates of the model coefficients are obtained. The poles, which define
the time domain basis functions, are calculated in each iteration by solving an eigenvalue
problem that is based on the estimated coefficients ~d ðvÞp . This process is repeated until the poles
are converged. In the final iteration, the time domain basis functions are based on the converged
set of relocated poles, and the overall transfer function is calculated by minimizing the cost
function (27). Table I shows the evolution of the maximum absolute fitting error in successive
iteration steps for the time domain VF and OVF algorithms, and it is found that both methods
are reliable and lead to satisfactory results in about five iterations.

Owing to the robustness of the orthonormal basis functions, the time domain OVF technique
is less sensitive to the initial pole specification than the time domain VF technique presented in
[36]. As an example, the real part of the basis function poles is chosen to be non-negligible such
that u5 0.05, and the algorithm is allowed to perform only one single iteration. Figure 3 shows

Figure 2. Power bus: Complex frequency response shown in a Smith Chart.
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that the OVF technique provides a highly accurate approximation of the time domain response,
since there is no visible difference between the data and the transient response of the model.
As can be seen from Figure 4, the maximal absolute error corresponds to 0.0032. If the same
calculations are performed using the VF approach, then the maximal absolute error corresponds
to 0.0120, which results in significant time domain discrepancies. As a means of validation, the

Table I. Maximum absolute fitting error of transient response in
successive iterations (u5 0.01).

Iteration VF OVF

1 0.0030 0.0030
2 0.0020 0.0020
3 0.0011 0.0011
4 0.0010 0.0010
5 0.0008 0.0008

0 5 10 15 20 25 30

0

0.05

0.1

Time [ns]

Figure 3. Power bus: Transient response of data and model over interval [0–30 ns].
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Figure 4. Power bus: Abs. fitting error over interval [0–30 ns]: 1 iter, u5 0.05.
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OVF-calculated transfer function is simulated in the frequency domain and compared with the
reference spectral response. Figures 5 and 6 confirm that an overall good approximation is
obtained, both in terms of the magnitude and the phase. Table II illustrates that both
approaches eventually converge to better, comparable results if additional iterations are
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Figure 5. Power bus: Magnitude response of model and reference data.
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Figure 6. Power bus: Phase response of model and reference data.

Table II. Maximum absolute fitting error of transient response in
successive iterations (u5 0.05).

Iteration VF OVF

1 0.0120 0.0032
2 0.0035 0.0021
3 0.0022 0.0010
4 0.0013 0.0011
5 0.0009 0.0008
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performed. This results from the fact that the initial poles (which are selected in a non-optimal
way) lead to a poor numerical conditioning in the first iterations. As more iterations are
performed, the poles are relocated to a better position, and the accuracy of the fitting model
improves gradually. Figure 7 shows the evolution of the maximum absolute fitting error in a
single iteration, if the number of starting poles is varied between 50 and 150 using u5 0.05, and
it is seen that the improvement holds for an arbitrary number of poles. Figure 8 shows the same
results using u5 0.01, and it is found that both algorithms give comparable results. It is seen that
OVF is still somewhat more accurate if the number of poles is chosen very high, but this
difference has little importance, since it is only observed if the number of poles is chosen much
higher than the ‘correct’ model order. It can be resolved by choosing u5 0.001 a bit smaller than
the recommended value, in which case both algorithms give a comparable result, as shown in
Figure 9. These figures show that the choice of starting poles is of crucial importance to ensure
accuracy of the results in the first iterations. In general, it is found that the OVF approach is
numerically more robust towards the initial pole specification and leads to either comparable or
better results, depending on the choice of u.
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Figure 7. Power bus: Maximum absolute fitting error vs number of starting poles in a single iteration (u50.05).
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Figure 8. Power bus: Maximum absolute fitting error vs number of starting poles in a single iteration (u50.01).
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6. EXAMPLE: ELLIPTIC LOWPASS FILTER

In this example, the same identification procedure is applied to calculate a macromodel of an
elliptic lowpass filter. A commercial full-wave electromagnetic simulator [47] is used to
characterize a state–space model of the filter over the frequency range of interest [0–3GHz]. This
filter is excited with a Gaussian pulse that is centered at t5 0.6 ns, with a width of 0.2 ns and a
height of 1 in normalized units. Based on the output signal of the filter, a 16-pole time domain
macromodel is computed by the proposed OVF algorithm. The starting poles are chosen
according to the heuristic scheme (31) with u5 0.01, and the poles are relocated in three
successive iteration steps. Figure 10 compares the transient response of the filter (solid line) and
the response of the OVF model (dotted) up to 100 ns. It is clear that a good agreement is
observed. In addition, the frequency response of the filter is compared with the frequency
response of the OVF model, and it is seen from Figures 11 and 12 that an excellent agreement is
obtained.
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Figure 9. Power bus: Maximum absolute fitting error vs number of starting poles in a single iteration
(u5 0.001).
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As an additional validation test, the frequency response of the filter is subjected to the
frequency domain OVF algorithm as reported in [15], and a 16-pole frequency domain
macromodel is calculated. Figure 13 visualizes the converged poles of the time domain OVF
macromodel (� ) and the converged poles of the frequency domain OVF macromodel (J), and
it is seen that both algorithms relocate the starting poles to the same position. This confirms that
the time domain identification is reliable and robust.

7. CONCLUSIONS

A time domain generalization of the OVF technique is proposed for accurate broadband
macromodeling from transient port responses. It combines the use of a Sanathanan–Koerner
iteration and an orthonormal set of basis functions to improve the numerical conditioning.
It is shown that the method is less sensitive to the initial pole specification when compared with
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the standard time domain vector fitting technique. Several examples illustrate the robustness
and accuracy of the technique.

ACKNOWLEDGEMENTS

The authors thank Prof. Grivet-Talocia for providing the dataset of the power bus structure. This work
was supported by the Research Foundation in Flanders (FWO-Vlaanderen). Dirk Deschrijver is a post-
doctoral research fellow of FWO-Vlaanderen.

REFERENCES

1. Li EP, Wei XC, Cangellaris AC,
Liu EX, Zhang YJ, D’Amore M,
Kim J, Sudo T. Progress review of
electromagnetic compatibility ana-
lysis technologies for packages,
printed circuit boards, and novel
interconnects. IEEE Transactions
on Electromagnetic Compatibility
2010; 52(2):248–265.

2. Pintelon R, Schoukens J. System
Identification: A Frequency
Domain Approach. IEEE Press:
Piscataway, NJ, U.S.A., 2001.

3. Beyene WT, Schutt-Aine JE.
Efficient transient simulation of
high-speed interconnects charac-
terized by sampled data. IEEE
Transactions on Components,
Packaging and Manufacturing
Technology—Part B 1998; 21(1):
105–114.

4. Gao R, Mekonnen YS,
Beyene WT, Schutt-Aine JE.
Black-box modeling of passive
systems by rational function
approximation. IEEE Transac-
tions on Advanced Packaging
2005; 28(2):209–215.

5. Triverio P, Grivet-Talocia S,
Nakhla MS, Canavero F,
Achar R. Stability, causality
and passivity in electrical inter-
connect models. IEEE Transac-
tions on Advanced Packaging
2007; 30(4):795–808.

6. Lefteriu S, Antoulas AC. A new
approach to modeling multi-
port systems from frequency
domain data. IEEE Transactions
on Computer Aided Design of
Integrated Circuits and Systems
2010; 29(1):14–27.

7. Gustavsen B, Semlyen A.
Rational approximation of
frequency domain responses by
vector fitting. IEEE Transactions
on Power Delivery 1999; 14(3):
1052–1061.

8. Gustavsen B. Improving the
pole relocating properties of
vector fitting. IEEE Transactions
on Power Delivery 2006;
21(3):1587–1592.

9. Deschrijver D, Mrozowski M,
Dhaene T, De Zutter D. Macro-
modeling of multiport systems
using a fast implementation of
the vector fitting method. IEEE

Microwave and Wireless Compo-
nents Letters 2008; 18(6):383–385.

10. Dhaene T, Deschrijver D.
Generalised vector fitting algo-
rithm for macromodelling of
passive electronic components.
IEE Electronics Letters 2005;
41(6):299–300.

11. Sanathanan CK, Koerner J.
Transfer function synthesis as
a ratio of two complex poly-
nomials. IEEE Transactions on
Automatic Control 1963; AC-8:
56–58.

12. Hendrickx W, Dhaene T.
A discussion of rational approxi-
mation of frequency domain
responses by vector fitting. IEEE
Transactions on Power Systems
2006; 21(1):441–443.

13. Hendrickx W, Deschrijver D,
Dhaene T. Some remarks on
the vector fitting iteration. Pro-
gress in Industrial Mathematics
at ECMI 2004, Mathematics
in Industry, vol. 8. Teubner:
Stuttgart, 2006; 134–138.

14. Deschrijver D, Gustavsen B,
Dhaene T. Advancements in
iterative methods for rational

0

x 10
8

0

1

2

3

4
x 10

9

Real

Im
ag

Poles (Time Domain OVF)
Poles (Freq Domain OVF)

Figure 13. Lowpass filter: Transfer function poles of time domain and frequency domain model.

Copyright r 2011 John Wiley & Sons, Ltd.

DOI: 10.1002/jnm

36

Int. J. Numer. Model. 2012; 25:24–38

D. DESCHRIJVER AND T. DHAENE



approximation in the frequency
domain. IEEE Transactions on
Power Delivery 2007; 22(3):
1633–1642.

15. Deschrijver D, Haegeman B,
Dhaene T. Orthonormal vector
fitting : a robust macromodeling
tool for rational approximation
of frequency domain responses.
IEEE Transactions on Advanced
Packaging 2007; 30(2):216–225.

16. Deschrijver D, Dhaene T,
Rolain Y. Macromodeling of
transfer functions with higher-
order pole multiplicities. Eleventh
IEEE Workshop on Signal Propa-
gation on Interconnects (SPI 2007),
Genova, Italy, 2007; 53–56.

17. Deschrijver D, Dhaene T.
A note on the multiplicity of
poles in the vector fitting macro-
modeling method. IEEE Trans-
actions on Microwave Theory
and Techniques 2007; 55(4):
736–741.

18. Gustavsen B. Comments on a
comparative study of vector
fitting and orthonormal vector
fitting techniques for emc appli-
cations. Eighteenth International
Zurich Symposium on EMC,
Munich, Germany, 2007; 131–134.

19. Deschrijver D, Dhaene T, De
Zutter D. Robust parametric
macromodeling using multivari-
ate orthonormal vector fitting.
IEEE Transactions on Micro-
wave Theory and Techniques
2008; 56(7):1661–1667.

20. Deschrijver D, Dhaene T.
Stability and passivity enforce-
ment of parametric macro-
models in time and frequency
domain. IEEE Transactions on
Microwave Theory and Techni-
ques 2008; 56(11):2435–2441.

21. Triverio P, Grivet-Talocia S,
Nakhla MS. A parameterized
macromodeling strategy with
uniform stability test. IEEE
Transactions on Advanced
Packaging 2009; 32(1):205–215.

22. Nouri B, Achar R, Nahkla M,
Saraswat D. z-Domain ortho-
normal vector fitting for macro-
modeling high-speed modules
characterized by tabulated data.
Proceedings of the 12th IEEE
Workshop on Signal Propagation
on Interconnects, Avignon,
France, 2008; 4.

23. Mekonnen YS, Schutt-Aine JE.
Broadband macromodeling of
sampled frequency data using
z-domain vector-fitting method.
Proceedings of the 11th IEEE
Workshop on Signal Propagation
on Interconnects, Genova, Italy,
2007; 45–48.

24. Wong N, Lei CU. IIR approxi-
mation of FIR filters via discrete-

time vector fitting. IEEE Trans-
actions on Signal Processing 2008;
56(3):1296–1302.

25. Mekonnen YS, Schutt-Aine JE.
Fast macromodeling technique
of sampled time/frequency data
using z-domain vector fitting
method. Proceedings of the IEEE
Electrical Performance of Electro-
nic Packaging Conference, Atlanta,
GA, USA, 2007; 47–50.

26. Lei CU, Wong N. IIR approxi-
mation of FIR filters via dis-
crete-time hybrid-domain vector
fitting. IEEE Signal Processing
Letters 2009; 16(6):533–536.

27. Kocar I, Mahseredjian J,
Olivier G. Weighting method
for transient analysis of under-
ground cables. IEEE Transac-
tions on Power Delivery 2008;
23(3):1629–1635.

28. Grivet-Talocia S. Passivity
enforcement via perturbation
of hamiltonian matrices. IEEE
Transactions on Circuits and
Systems I: Regular Papers 2004;
51(9):1755–1769.

29. Saraswat D, Achar R, NakhlaMS.
Global passivity enforcement algo-
rithm for macromodels of inter-
connect subnetworks characterized
by tabulated data. IEEE Transac-
tions on Very Large Scale Integra-
tion Systems 2005; 13(7):819–832.

30. Lamecki A, Mrozowski M.
Equivalent SPICE circuits with
guaranteed passivity from non-
passive models. IEEE Transac-
tions on Microwave Theory and
Techniques 2007; 55(3):526–532.

31. Grivet-Talocia S, Ubolli A.
A comparative study of passivity
enforcement schemes for linear
lumped macromodels. IEEE
Transactions on Advanced
Packaging 2008; 31(4):673–683.

32. Dhaene T, Deschrijver D,
Stevens N. Efficient algorithm
for passivity enforcement of
S-parameter based macromodels.
IEEE Transactions on Microwave
Theory and Techniques 2009;
57(2):415–420.

33. Deschrijver D, Dhaene T. Fast
passivity enforcement of
S-parameter macromodels by
pole perturbation. IEEE Trans-
actions on Microwave Theory
and Techniques 2009; 57(3):
620–626.

34. Gao S, Li YS, Zhang MS. An
efficient algebraic method for the
passivity enforcement of macro-
models. IEEE Transactions on
Microwave Theory and Techniques
2010; 58(7):1830–1839.

35. Lei CU, Wong N. Efficient linear
macromodeling via discrete-time
time-domain vector fitting. Pro-
ceedings of the 21st International

Conference on VLSI Design,

Hyderabad, India, 2008; 469–474.
36. Grivet-Talocia S. The time-

domain vector fitting algorithm

for linear macromodeling. Inter-

national Journal on Electronics

and Communications (AEUE)

2004; 58:293–295.
37. Haegeman B, Deschrijver D,

Dhaene T. Efficient time-

domain macromodeling of com-

plex interconnection structures.

Proceedings of the Eurocon 2007

Conference, Warsaw, Poland,

2007; 85–87.
38. Deschrijver D, Haegeman B,

Dhaene T. Robust identification

of transient port responses using

time domain orthonormal vector

fitting. Proceedings of the 3rd

IFAC Symposium on System,

Structure and Control, Foz do

Iguacu, Brazil, 2007.
39. Pintelon R, Guillaume P,

Rolain Y, Schoukens J,

Hamme HV. Parametric identi-

fication of transfer functions

in the frequency domain—a

survey. IEEE Transactions on

Automatic Control 1994; 39(11):

2245–2260.
40. Heuberger P, Van Den Hof PMJ,

Wahlberg B. Modelling and Iden-

tification with Rational Orthogonal

Basis Functions. Springer: London,

2005.
41. Levi EC. Complex curve fitting.

IEEE Transactions on Automatic

Control 1959; AC-4:37–43.
42. Goodwin GC, Graebe SF,

Salgado ME. Control System

Design. Prentice-Hall: NJ,

U.S.A., 2001.
43. Antonini G. SPICE equivalent

circuits of frequency-domain

responses. IEEE Transactions

on Electromagnetic Compatibility

2003; 45(3):502–512.
44. Antonini G. Equivalent network

synthesis for via holes disconti-

nuities. IEEE Transactions

on Advanced Packaging 2002;

25(4):528–536.
45. Bracewell R. The Fourier Trans-

form & Its Applications (2nd

edn). McGraw-Hill: Reading,

NY, U.S.A., 1986.
46. Grivet-Talocia S, Canavero FG,

Stievano IS, Maio IA. Circuit

extraction via time-domain vector

fitting. Proceedings of the Inter-

national Symposium on Electro-

magnetic Compatibility (EMC

2004) 2004; 3:1005–1010.
47. Sonnet Suites. High frequency

electromagnetic software,

Syracuse, NY, U.S.A.

Copyright r 2011 John Wiley & Sons, Ltd.

DOI: 10.1002/jnm

37

Int. J. Numer. Model. 2012; 25:24–38

ACCURATE MACROMODELING ALGORITHM



AUTHORS’ BIOGRAPHIES

D. Deschrijver was born in Tielt, Belgium, on September 26, 1981. He received the
Master’s (Licentiaat) degree and the PhD degree in Computer Science from the
University of Antwerp, Antwerp, Belgium, in 2003 and 2007 respectively. From May
to October 2005, he was a Marie Curie Fellow with the Scientific Computing Group,
Eindhoven University of Technology, Eindhoven, The Netherlands. He is currently
an FWO Post-Doctoral Research Fellow with the Department of Information
Technology (INTEC), IBBT, Ghent University, Gent, Belgium. His research
interests include robust parametric macromodeling, rational least squares approx-
imation, orthonormal rational functions, system identification, and broadband
macromodeling techniques.

T. Dhaene was born in Deinze, Belgium, on June 25, 1966. He received the PhD
degree in Electrotechnical Engineering from the University of Ghent, Gent, Belgium,
in 1993. From 1989 to 1993, he was a Research Assistant with the Department of
Information Technology (INTEC), University of Ghent, where his research was
focused on different aspects of full-wave electromagnetic (EM) circuit modeling,
transient simulation, and time-domain characterization of high-frequency and
highspeed interconnections. From August 1993 to September 2000, he was with the
EDA Company Alphabit (later the Hewlett-Packard Company and now part of
Agilent Technologies). He was one of the key developers of the planar EM simulator
ADS Momentum. From October 2000 to September 2007, he was a Professor with
the Department of Mathematics and Computer Science, University of Antwerp,
Antwerp, Belgium. Since October 2007, he has been a Full Professor with the

INTEC, Ghent University. He has authored or coauthored over 210 peer-reviewed papers and abstracts in
international conference proceedings, journals, and books.

Copyright r 2011 John Wiley & Sons, Ltd.

DOI: 10.1002/jnm

38

Int. J. Numer. Model. 2012; 25:24–38

D. DESCHRIJVER AND T. DHAENE




