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In this paper a novel macromodeling scheme is presented to model the per unit of length
(p.u.l.) parameters of uniform transmission lines. In particular, it is focused on single on-
chip interconnects, because their p.u.l. parameters are influenced by the presence of semi-
conductor (s) and as such exhibit a strong frequency-dependency, making the modeling
process harder. Starting from a set of very accurate tabulated data samples, obtained by
two-dimensional electromagnetic modeling, rational models for the four p.u.l. parameters
are constructed. The novelty of the approach lies in the fact that the rational models are
positive by construction and that a controllable accuracy is obtained. These models can
then further be used to construct multivariate models, e.g., for variability analysis. Here,
the novel scheme is applied to an on-chip inverted embedded microstrip line, of which
the signal integrity behavior is assessed in both the frequency and the time domain, dem-
onstrating the applicability of the macromodels.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

State-of-the-art interconnect design is very challenging. Designers are facing ever more stringent design specifications —
expressed in terms of bandwidth, speed, crosstalk, signal attenuation, etc. — that dictate the need for powerful modeling
tools. It is of a paramount importance that these tools are able to very accurately incorporate all substrate loss mechanisms
and the finite conductivity and shape of the metallic interconnects. From this perspective, macromodels describing all high-
frequency behavior are extremely useful to analyze the signal integrity (SI) behavior of the interconnects.

Often, interconnect structures are characterized by using their cross-sectional geometry in a two-dimensional (2-D) elec-
tromagnetic (EM) simulation, leading up to a corresponding transmission line model [1]. An accurate description of the inter-
connects is then provided in terms of their per unit of length (p.u.l.) resistance (R), inductance (L), conductance (G) and
capacitance (C) parameters, yielding so-called RLGCðf Þ models. Here, f denotes the frequency, as such indicating the fre-
quency-dependent character of the p.u.l. parameters. For a comprehensive overview of such modeling methods, the reader
is encouraged to consult [1] and the references therein. For on-chip lines that are electrically very short, sometimes, the p.u.l.
resistance R and capacitance C are dominant (RC regime). In the present paper, however, all four p.u.l. parameters are con-
sidered, making the approach more general and also valid at very high frequencies. Thereto, a very accurate 2-D EM mod-
eling procedure, making use of a Dirichlet-to-Neumann (DtN) boundary operator, is used as a starting point [2]. This method
. All rights reserved.

ion flanders (FWO-Vlaanderen). Dirk Deschrijver is a post-doctoral research fellow of FWO-Vlaanderen.

http://dx.doi.org/10.1016/j.apm.2012.09.068
mailto:annie.cuyt@ua.ac.be
http://dx.doi.org/10.1016/j.apm.2012.09.068
http://www.sciencedirect.com/science/journal/0307904X
http://www.elsevier.com/locate/apm


O.S. Celis et al. / Applied Mathematical Modelling 37 (2013) 4874–4882 4875
allows to accurately predict all adverse effects induced, e.g., by the finite conductivity of the metallic interconnects (skin ef-
fect) and by the semiconductors (slow-wave effects [3]. However, the modeling tool described in [2] as such is not sufficient
to be useful for state-of-the-art interconnect design, because, although accurate, this EM modeling technique on its own is
rather slow and only yields tabulated p.u.l. data.

In [4] it was proposed to apply the vector fitting (VF) technique [5–7] to the complex p.u.l. impedance Z ¼ Rþ jxL and to
the complex p.u.l. admittance Y ¼ Gþ jxC (where x ¼ 2pf is the angular frequency) of an on-chip transmission line, yield-
ing broadband rational macromodels. The rational macromodels, so obtained, constitute essential building blocks to com-
pute multivariate macromodels for stochastic model-based variability analysis [8,9] or can be immediately used for SI
analysis. A limitation of this complex fitting approach [4] is, however, that it leads to modeling errors that are potentially
unbalanced between the different RLGCðf Þ parameters. Also, it is essential that all four p.u.l. parameters are strictly positive
[10]. Using the technique described in [4], this requirement can only be assessed and possibly enforced a posteriori when
needed.

In the present paper, a different approach is proposed to develop broadband macromodels with p.u.l. parameters that are
positive by construction, and this with a controllable accuracy. Rather than fitting the complex p.u.l. impedance and admit-
tance of the line, guaranteed positive models are computed for the four real-valued RLGCðf Þ parameters individually. To this
end, a reliable technique for positive rational interpolation of the p.u.l. parameters is proposed. In particular, by performing
the interpolation over well-defined data intervals, it is possible to specify explicit frequency-dependent accuracy constraints
on each individual p.u.l. parameter. The technique is applied to a realistic application example, i.e. an on-chip inverted
embedded microstrip (IEM) line, which was especially selected because it exhibits all potential substrate and conductor loss
mechanisms.

In Section 2, the application example, i.e. the IEM line, is introduced and it is briefly explained how its tabulated RLGCðf Þ
responses are obtained using the 2-D EM tool. Next, in Section 3, the novel rational interpolation technique is thoroughly
explained. In Section 4, first, the rational macromodeling technique is applied to the p.u.l. parameters of the IEM line, dem-
onstrating the controllable accuracy. Next, the macromodels are deployed to assess the SI behavior of a source-line-load con-
figuration, both in frequency and in time domain. Conclusions are summarized in Section 5.
2. Application example

2.1. Geometry

In this paper, as a case study, we choose an on-chip interconnect structure, i.e. the on-chip IEM line presented in Fig. 1 is
considered. The build-up comprises a 30 lm thick doped silicon substrate with a relative permittivity �r ¼ 11:7 and conduc-
tivity r ¼ 10 S/m. On top of the silicon semiconductor, an 11.4 lm thick SiO2 insulator with a relative permittivity �r ¼ 3:9
and loss tangent tan d ¼ 0:001 is present. The line consists of a metallic strip with a width of 2 lm and a height of 2 lm that
is embedded in the SiO2, 6.4 lm above the semiconductor–insulator interface. A 3 lm thick plate on top of the insulator
serves as the ground plane of the microstrip line. Both the line and the ground plate are Aluminum, with a conductivity
of 3:77 � 107 S/m.

We opt for this particular on-chip interconnect example because it exhibits dispersive and slow-wave effects [3]. Hence,
the p.u.l. parameters are strongly frequency-dependent (see also Section 4.1), obviously making the modeling process hard-
Fig. 1. Material properties and geometrical details of the on-chip IEM line under investigation (not on scale).
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er. It is also interesting to mention that the specific topology of Fig. 1, with a top-plate ground, is gaining importance in high-
frequency IC-design [11], making it an important case study anyhow.

2.2. Accurate tabulated RLGCðf Þ computation

The procedure described in [2] allows to accurately compute the p.u.l. transmission line parameters of the structure pre-
sented in Fig. 1, by adopting a quasi-TM behavior of the fields and a careful definition of the circuit currents in the presence
of the semiconductor. This leads to a consistent formulation of the complex inductance and complex capacitance problem,
which are cast as boundary integral equations (BIEs). This is made possible thanks to a (discretized) differential surface
admittance operator (i.e. a Dirichlet-to-Neumann operator). The BIEs are solved at a discrete number of frequencies, yielding
the tabulated p.u.l. RLGCðf Þ parameters. With this procedure, costly volume discretization is avoided, while still maintaining
excellent accuracy, encompassing skin effect and slow-wave phenomena.

3. Positive rational approximation

This section describes a novel approach to develop broadband macromodels that are positive by construction, starting
from the tabulated RLGCðf Þ data of Section 2.2. Rather than fitting the complex p.u.l. admittance and impedance of the line,
a guaranteed positive interpolation scheme is presented to model the four real-valued RLGCðf Þ parameters individually. The
macromodel for an arbitrary p.u.l. parameter X (where X stands for R; L;G, and C) are constructed from frequency-dependent
data samples Xi ¼ XðfiÞ.

3.1. Barycentric interpolation formula

Given nþ 1 tabulated data ðfi;XiÞ 2 R2, the barycentric interpolation formula [12–18] can be applied to obtain a rational
function expression
rnðf Þ ¼
Pn

i¼0Xi
ui

f�fiPn
i¼0

ui
f�fi

; ui – 0 ð1Þ
that interpolates the values Xi at the fi for any non-zero weights ui, hence rnðfiÞ ¼ Xi. A key advantage of the barycentric for-
mula (1) is that the flexible choice of weights ui makes it possible to impose certain shape preserving properties as reported
in [19]. In the current paper, some of the ideas in [19] are picked up, and a novel procedure is proposed to determine weights
ui such that the resulting rational function rnðf Þ is guaranteed to be pole-free and positive over the entire frequency axis
½0;þ1½. It is obvious that Xi > 0 is mandatory for positivity of rnðf Þ, a requirement that is fulfilled by using the accurate
2-D EM solver of Section 2.2 to construct the tabulated samples.

3.2. Pole-free over the frequency axis

Let the frequency samples fi be ordered in such a way that a < f0 < f1 < � � � < fn < b. Note that strict inequality at the end-
points in merely a technical assumption which is needed further on in Eqs. 3 and 4. For an irreducible rational function rnðf Þ
to be free of poles on the entire frequency axis, it is known [12] that the ui in (1) must alternate in sign with
uiuiþ1 < 0; i ¼ 0; . . . n� 1:
Since the values of the ui are only defined up to a constant multiple, i.e. a normalization of rnðf Þ, it is natural to define
ui ¼ ð�1Þiûi or ui ¼ ð�1Þiþ1ûi and simply look for values ûi with a fixed sign instead. Here we take ûi > 0 and explain below
which sign for ui is ultimately chosen.

3.3. Guaranteed positivity constraints

For guaranteed positivity, additional constraints for the weights are imposed. Denote by
‘ðf Þ ¼
Yn

k¼0

ðf � fkÞ; ‘iðf Þ ¼
Yn

k¼0;k–i

ðf � fkÞ:
After multiplying both the numerator and denominator in the representation (1) of rnðf Þ with ‘ðf Þ, it is easily seen that the
numerator and denominator polynomials of rnðf Þ ¼ pnðf Þ=qnðf Þ are respectively
pnðf Þ ¼
Xn

i¼0

Xiui‘iðf Þ; qnðf Þ ¼
Xn

i¼0

ui‘iðf Þ:
In order to obtain a rational function rnðf Þ that is positive on an interval ½a; b�, the sign of pnðf Þ and qnðf Þ on ½a; b� should be the
same. Without loss of generality, we aim for qnðf Þ > 0.
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A necessary condition for qnðf Þ to be positive on ½a; b� is obviously qnðfiÞ > 0 for all i ¼ 0; . . . ;n. With the presumed ordering
of the points fi, the values ‘iðfiÞ alternate in sign and ‘nðfnÞ > 0. Because qnðfiÞ ¼ ui‘iðfiÞ, it is clear that un > 0is also required,
and therefore the following convention is adopted
ui ¼ ð�1Þn�iûi; ûi > 0; i ¼ 0; . . . ;n: ð2Þ
It is shown in [19] that a sufficient condition for the denominator polynomial qnðf Þ not to change sign in ½a; b� is,
ûi�1

b� fi�1
� ûi

b� fi
< 0; i ¼ 1; . . . ;n;

� ûi

fi � a
þ ûiþ1

fiþ1 � a
< 0; i ¼ 0; . . . ; n� 1:

ð3Þ
Taking into account that all Xi have the same sign, a sufficient condition for the numerator polynomial pnðf Þ not to change
sign in ½a; b� is obtained in an analogous way
Xi�1
ûi�1

b� fi�1
� Xi

ûi

b� fi
< 0; i ¼ 1; . . . ;n;

� Xi
ûi

fi � a
þ Xiþ1

ûiþ1

fiþ1 � a
< 0; i ¼ 0; . . . ;n� 1:

ð4Þ
Hence, for given Xi (either all positive or all negative), the combined linear inequalities in (2), (3) and (4) allow to find
weights ûi (or ui), such that the sign of the corresponding interpolating rational function rnðf Þ agrees with that of the Xi

on the entire interval ½a; b�. Positivity over the entire frequency axis can be ensured by conformally mapping the half open
interval ½0;þ1½ to the closed interval ½a; b� ¼ ½�1;1� using a standard Möbius transformation.

3.4. Interval interpolation

To obtain a low (er) model complexity while maintaining a desired accuracy, the point values Xi are relaxed to intervals
X i ¼ ½Xi;Xi� and the concept of interval interpolation [19] is used. Hence, rather than a point value Xi, an interval X i ¼ ½Xi;Xi� is
given at each frequency fi. Typically, the bounds Xi < Xi are user-specified thresholds indicating the maximum allowed devi-
ation from Xi.

The problem statement then becomes the following. Given N þ 1 points fi and intervals X i, take any nþ 1 points fij among
them with n < N and search for nþ 1 values Yij 2 X ij as well as nonzero weights uj; j ¼ 0; . . . ;n, such that the rational
function
Rnðf Þ ¼

Pn
j¼0Yij

uj

f�fijPn
j¼0

uj

f�fij

; uj – 0 ð5Þ
satisfies the interpolation conditions
RnðfiÞ 2 X i; i ¼ 0; . . . ;N: ð6Þ
A graphical illustration hereof is shown in Fig. 2. Essentially, this formulation allows explicit error control for each individual
p.u.l. parameter.

In [19] straightforward quadratic conditions in ui and Yij are given such that the interpolation conditions (6) are satisfied.
Next we show how these interpolation conditions can be satisfied from merely linear conditions. The key to the novel linear
conditions is to introduce the new variable v j ¼ Yij uj and write Rnðf Þ as
Rnðf Þ ¼

Pn
j¼0

v j

f�fijPn
j¼0

uj

f�fij

; uj – 0: ð7Þ
Assuming that uj is given as in (2), let
v j ¼ ð�1Þn�jY ij ûj ¼ ð�1Þn�jv̂ j: ð8Þ
Since we imposed that ûj > 0, the sign of v̂ j depends only on the sign of Yij .
The interpolation conditions Rnðfij Þ ¼ Yij 2 X ij at the points fij can thus be written as
Xij 6
v̂ j

ûj
6 Xij

()
�v̂ j þ ûjXij 6 0

v̂ j � ûjXij 6 0

(
; j ¼ 0; . . . ;n: ð9Þ



Fig. 2. Graphical illustration of interval interpolation. Each vertical segment is an interval ½Xi;Xi� at frequency fiði ¼ 0; . . . ;NÞ. The circles (�) indicate chosen
frequencies fij ðj ¼ 0; . . . ;nÞ for the representation (5). The dashed curve represents a rational function Rnðf Þ satisfying (6). It intersects each interval X ij

(shown as thick segment) at a value Yij and all other intervals (shown as regular segments) at further unspecified values.
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Before considering the remaining interpolation conditions, denote the numerator and denominator polynomials of Rnðf Þ as
before by
Pnðf Þ ¼
Xn

j¼0

v j‘ij ðf Þ; Q nðf Þ ¼
Xn

j¼0

uj‘ij ðf Þ;
where
‘ij ðf Þ ¼
Yn

k¼0;k–j

ðf � fik Þ:
Given that Q nðfiÞ > 0, a condition previously ensured, the interval interpolation conditions RnðfiÞ 2 X i for i – ij are
Xi 6
PnðfiÞ
Q nðfiÞ

6 Xi

()
�PnðfiÞ þ XiQ nðfiÞ 6 0
PnðfiÞ � XiQnðfiÞ 6 0

�
: ð10Þ
Note that these conditions are linear inequalities in the unknowns v̂ j and ûj. Once v j and uj are determined, Yij can also be
determined and Rnðf Þ can again be written in the barycentric form if desired, e.g. for its evaluation. As pointed out in [19], it is
not crucial which points fij from ff0; . . . ; fng are chosen to construct Rnðf Þ. Only the value of n matters. If for a certain fixed n
there exists an Rnðf Þ satisfying (6), then such an Rn can be established for any choice of (distinct) fij .

3.5. Optimization routine

After fixing the value n and choosing points fij ðj ¼ 0; . . . ; nÞ among the given fi for the representation (7), coefficients
v̂ j; ûj > 0 satisfying the homogeneous linear inequalities (3), (4), (9) and (10) need to be found. This issue is discussed next.

Denote the vector of unknown coefficients by
c ¼ ðv̂0; . . . ; v̂n; û0; . . . ; ûnÞT 2 R2nþ2
and denote by A the ð2N þ 6nþ 4Þ � ð2nþ 2Þ constraint matrix constructed from the linear inequalities (3) for ûj, (4) for
v̂ j ¼ Yij ûj, (9) and (10), and the strict positive conditions ûj > 0 and v̂ j > 0 which need to be established. In order to obtain
a maximally robust and nontrivial vector c – 0 in the interior of the corresponding unbounded polyhedral cone [20]
c 2 R2nþ2jAc 6 0
� �

; ð11Þ



Fig. 3. Macromodels (full line) and tabulated samples (markers �) of the four p.u.l. parameters of the IEM line of Fig. 1. For clarity, only one third of the
tabulated data samples are shown.
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we propose the solution of the strictly convex quadratic programming (QP) problem [21]:
arg min
c2R2nþ2

kck2ð Þ2

subject to Ajc 6 �dkAjk2; j ¼ 1; . . . ;2N þ 6nþ 4:
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Here d > 0 is an arbitrary robustness margin, Aj denotes the jth row of the matrix A and k � k2 is the Euclidean norm. The
computed vector c then satisfies the componentwise inequalities in (11) in a strict sense. For an in-depth discussion of
the geometrical interpretation and alternative formulations, we refer to the forthcoming paper [22].

When feasible, the optimization problem above has a unique solution, which can for instance be found using the quad-
prog routine in MATLAB. This routine also assesses whether or not the optimization problem is feasible. Once values for the
coefficients v̂ j and ûj are determined, weights uj and values Yij are obtained from (2) and (8) respectively, such that a guar-
anteed positive rational function of the form (5) is fully determined.
4. Numerical results

4.1. Macromodeling of the p.u.l. parameters

As an application example, the proposed novel interpolation scheme is applied to compute guaranteed positive macro-
models of the real-valued RLGCðf Þ parameters of the IEM line presented in Section 2.1. First, a tabulated set of
N þ 1 ¼ 100 data points Xi ¼ XðfiÞ is calculated using the 2-D EM modeling tool of Section 2.2, where the corresponding fre-
quencies fi are logarithmically spaced, up to 320 GHz. For each of these data points Xi, an interval X i ¼ ½Xi;Xi� is constructed
whose upper and lower bounds are independently chosen as
Fig. 4.
C is sho
Xi ¼ Xi � eXi; Xi ¼ Xi þ eXi:
Here, e is a user-specified accuracy threshold that defines the maximum allowed deviation between the rational macromodel
and the reference data according to a relative error criterion
max
i

jXðfiÞ � RnðfiÞj
jXðfiÞj

� �
< e:
In order to obtain a compact model with low model orders, the value n of Rnðf Þ is chosen as follows. For increasing
n ¼ 0;1;2; . . . a subset of nþ 1 points fij is chosen among the given fi in a structured fashion, the feasibility of the QP problem
is checked and a solution is computed if it exists. Since the data has an overall smooth behavior, it is natural to choose the fij

as uniformly as possible over the interpolation interval. It is found that a value of n ¼ 11 is sufficient to model all the p.u.l.
parameters with a relative error e of 0.1%. Fig. 3 shows the response of the macromodel, and an excellent agreement is ob-
served with the reference data points. The controllable accuracy is demonstrated in Fig. 4, where the actual obtained relative
error on the p.u.l. capacitance C is shown when using three different target accuracies e ¼ 5%, 0.1%, 0.01% during the mac-
romodeling process.
Illustration of the controllable accuracy of the novel macromodeling scheme. The obtained relative error for the macromodel of the p.u.l. capacitance
wn when using three different target accuracies e during the modeling process.



Fig. 5. Transfer function Hðf Þ of the source-line-load configuration.

Fig. 6. TDT eye diagram of the source-line-load configuration.
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4.2. Signal integrity analysis in frequency and time domain

The applicability of the novel rational models is now demonstrated by computing relevant frequency and time domain SI
characteristics. A source-line-load configuration is constructed by giving the IEM line of Fig. 1 a finite length of 1 mm. The
line is driven by a low-impedance Thévenin generator composed of a voltage source Eðf Þ or EðtÞ, depending on whether we
are considering frequency (f) or time (t) domain respectively, and an internal impedance of 1 X. The line is terminated by a
capacitive load of 1 pF. In the frequency domain, we compute the transfer function Hðf Þ ¼ VLðf Þ=Eðf Þ, where VLðf Þ is the volt-
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age at the capacitive load. The magnitude and phase of this transfer function are shown in Fig. 5. Around 7 GHz, a resonance
appears. This can be attributed to the inductance of the line in combination with the capacitive load, indicating that, at high
frequencies, the IEM line does no longer operate in the RC regime. This is further illustrated in Fig. 6 where a time domain
transmissometry (TDT) eye diagram is shown. To this end, the time domain voltage source EðtÞ produces a pseudo-random
bit sequence (PRBS) with a bitrate of 10 Gbps, a rise/fall time of 50 ps and a voltage swing of 1 V. It is interesting to mention
that, by generating this kind of plots starting from the rational macromodels, a design engineer can immediately assess the
amount of ringing and overshoot on the line.

5. Conclusions

A novel macromodeling scheme for the p.u.l. parameters of transmission lines was presented. In particular, an on-chip
interconnect, i.e. an IEM line, was chosen as a case study. This application example was especially selected as the presence
of the semiconductor leads to p.u.l. parameters that are strongly frequency-dependent, making the macromodeling process
harder. Starting from a set of accurate but tabulated RLGCðf Þ data, four rational models are computed. The novelty of the
approach lies in the fact that, by construction, the new scheme guarantees the positivity of the four models within the entire
frequency range. Furthermore, it is shown that a controllable accuracy is achieved. These properties were illustrated by first
applying the presented rational modeling technique to the p.u.l. parameters of the IEM line. Next, the applicability of the
method was demonstrated by assessing the SI behavior of the IEM line, both in frequency and in time domain, using the no-
vel rational models for the p.u.l. parameters.
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