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Abstract—In order to ensure optimal quality of experience
toward end users during video streaming, automatic video quality
assessment becomes an important field-of-interest to video service
providers. Objective video quality metrics try to estimate per-
ceived quality with high accuracy and in an automated manner.
In traditional approaches, these metrics model the complex
properties of the human visual system. More recently, however,
it has been shown that machine learning approaches can also
yield competitive results. In this paper, we present a novel no-
reference bitstream-based objective video quality metric that is
constructed by genetic programming-based symbolic regression.
A Kkey benefit of this approach is that it calculates reliable
white-box models that allow us to determine the importance of
the parameters. Additionally, these models can provide human
insight into the underlying principles of subjective video quality
assessment. Numerical results show that perceived quality can
be modeled with high accuracy using only parameters extracted
from the received video bitstream.

Index Terms—H.264/AVC, high definition, no-reference, objec-
tive video quality metric, quality of experience (QoE).

1. INTRODUCTION

URING real-time transmission of digital video over
best-effort internet protocol (IP)-based networks, packet
losses can severely degrade the overall quality of experience
(QoE) of the end users [1]. This, in turn, influences willingness
to pay and customer satisfaction [2], [3]. Furthermore, QoE
is considered a key factor for the success or failure of new
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broadband video services [4]. Therefore, service providers
strive toward maximizing and maintaining adequate QoE at all
times. In the case of video streaming, this requires continuous
monitoring and measuring of perceived video quality in order
to get an indication of end users’ QoE.

Subjective video quality assessment is commonly used to
measure the influence of visual degradations on perceived
quality of video sequences [5]. During subjective quality
assessment, real human observers evaluate the visual quality of
a number of short video sequences by, for example, providing
a score between 1 (bad) and 5 (excellent) after or while
watching each video sequence. Afterwards, the mean opinion
score (MOS) is calculated per video sequence as the average
quality rating provided by the different observers. Several as-
sessment methodologies have already been standardized by the
International Telecommunications Union (ITU) in ITU-T Rec-
ommendation P.910 [6] and ITU-R Recommendation BT.500-
12 [7], and describe in detail how subjective video quality
experiments should be set up and conducted. However, sub-
jective experiments are time consuming, expensive and need
to be conducted in controlled environments. Furthermore, it is
clear that subjective quality assessment cannot be used in the
case of real-time quality monitoring and measuring.

Over the past years, a lot of research has been conducted
toward the construction of objective video quality metrics.
As stated in [8], “The goal of objective image and video
quality assessment research is to design quality metrics that
can predict perceived image and video quality automatically.”
This rather broad definition can also be refined by stating that
this prediction should be reliable and correlate well with scores
of subjective quality assessment (= MOS scores).

In this paper, the use of a robust machine learning (ML)
technique, called symbolic regression, is proposed to derive
a new no-reference bitstream-based objective video quality
metric for estimating perceived quality of high definition
(HD) H.264/AVC encoded videos. The new approach has two
distinctive features that make it particularly attractive for the
analysis of perceived video quality: 1) it allows us to perform
an automated selection of the most important variables, and
2) it provides predictive models that are interpretive and
provide insight in the relation between encoder settings, loss
location, and video content characteristics and the perceived
quality.
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Fig. 1. Different categories of video quality metrics based on the amount
of information which is used from the reference sequence or based on the
processing level for extracting information in order to model perceived quality.

The remainder of this paper is outlined as follows. Section II
gives an overview of the state-of-the-art and describes how ML
algorithms can be used to derive different types of objective
video quality metrics. In Section III, the modeling principles of
the genetic-programming-based symbolic regression approach
are outlined, and a detailed description of the algorithmic
aspects is provided. In order to validate the effectiveness
of the proposed method, an extensive subjective experiment
was conducted. The procedure that is followed to collect the
subjective quality ratings from human observers is discussed
in Section IV. Then, Section V presents the main results and
describes how the new modeling approach can be applied to
derive a new no-reference bitstream-based metric for video
quality assessment. First, the different parameters that are
extracted from the received encoded video bitstream are listed
and the symbolic regression approach is used to determine the
most important parameters. Next, this subset of parameters is
selected in the modeling process to compute a final model
that predicts the perceived video quality in a reliable way. An
interpretation of the model and a comparison with alterna-
tive machine learning techniques is also provided. Numerical
results confirm that the perceived quality can be predicted
accurately using only parameters extracted from the received
video bitstream. Section VI concludes the article.

II. MACHINE LEARNING-BASED METRICS
A. Objective Video Quality Metrics

In general, objective video quality metrics can be catego-
rized into three main classes, based on the availability of the
original video sequences as depicted in Fig. 1.

Full-reference (FR) quality metrics [9] require access to
the complete original video stream. Research has already
shown that FR metrics can predict perceived quality with
high accuracy. However, due to their dependency on the
original video, FR metrics cannot be used for real-time video
quality evaluation. Reduced-reference (RR) metrics, recently
standardized in [10], perform quality predictions by compar-
ing features extracted from the original and received video
sequence. In order to transmit these features from the points
they are extracted to the point where the quality evaluation is
performed, an ancillary error-free channel is needed. Both FR
and RR metrics usually predict quality based on a frame-by-
frame evaluation. As such, the received video stream requires
proper alignment with the original sequence. From a real-time
monitoring point of view, no-reference (NR) video quality
metrics are the most interesting ones as they neither need
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access to the original sequence nor rely on feature extrac-
tion [11].

Another criterion to categorize these metrics is the type of
information or processing level where the information from
the video sequences is extracted. As such, pixel-based metrics
require access to the decoded video stream whereas bitstream-
based metrics only perform a parsing of the encoded data.
A last category of video quality metrics are the parametric
metrics, which only use high level information accessible
through the packet headers in the case of video streaming.
Quality metrics combining information from the network-,
pixel-, and/or bitstream-level are also called hybrid metrics.
For real-time video quality evaluation, metrics that do not
require a complete decoding of the received video stream are
of particular interest. The interested reader is referred to [12]
for more details on the classification of objective video quality
metrics and a performance comparison.

The performance of FR and RR video quality metrics has
already widely been investigated by the Video Quality Experts
Group (VQEG) through several projects [13]-[15]. The results
of this study resulted in the standardization of a number
of objective video quality metrics. However, research is still
ongoing toward the construction of NR metrics.

B. Overview of State-of-the-art

Machine learning techniques such as neural networks (NN),
support vector machines (SVM), support vector regression
(SVR), and decision trees have already successfully been
applied for constructing objective video quality metrics. In
general, these metrics either use regression or classification
for estimating perceived quality. Regression is commonly used
for estimating MOS whereas classification is typically used for
predicting error visibility by means of a binary decision.

In Mohamed et al. [16], [17], used NNs for constructing an
objective video quality metric capable of continuous quality
monitoring and measuring. The stream bitrate, sequence frame
rate, network loss rate and burst size, and the ratio of encoded
intra- to intermacroblocks are used as inputs to the NN.
However, only a single low resolution [352 x 288 pixels']
video sequence was used for training and validating the model.
Consequently, the influence of video content is not considered
in the proposed model. Nevertheless, results indicated that
quality can be estimated with a high accuracy without the
need for modeling the human visual system (HVS). A similar
approach is followed in [18], where an NN is used to estimate
perceived quality of H.264/AVC encoded CIF resolution se-
quences. However, the authors do not consider the influence of
network impairments on the perception of quality. NNs have
further also been used in [19], [20], and [21] for modeling
video quality.

Recently, SVMs have been used to predict video quality.
In [22], different NR and RR parameters are extracted from
the decoded video stream and used to build an SVM. The
performance of the model is evaluated based on an existing
FR objective video quality metrics, VQM [23]. Compared to
their previous work [24], the authors found that video quality

ICommon interchange format (CIF) resolution.
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can be predicted with a higher accuracy using SVMs. Also
Narwaria et al. [25]-[27] model visual quality using SVR.
More specifically, ML is used for modeling the interaction
effect between spatial and temporal quality factors affecting
perceived video and image quality. In [27], they evaluate the
performance of SVR on a number of video databases against
eight different existing visual quality predictors, and the results
show a significant improvement in prediction accuracy.

Rather than  estimating the perceived quality,
Argyropoulos et al. [28], [29] use SVMs to build a classi-
fier for estimating the probability that an impairment in the
video stream will result in a visible impairments for the
end-user.

In [30] and [31], packet loss visibility is estimated using
decision trees. In this case, a binary classification is performed
labeling an impairment in the video bitstream as visible or
invisible to the average end user. A decision tree is also
used by Menkovski et al. [32] to determine whether the
QoE of a video service is acceptable or not acceptable. As
a decision tree is a white box model, the internal structure of
the classification process is completely visible and can thus be
used to gain better insights in the modeling process. This is
not the case for SVMs and NNs, which are black-box models.

In our previous work [33], we investigated and modeled
impairment visibility in HD H.264/AVC encoded video se-
quences using decision trees. Our results showed that it is
possible to reliably predict impairment visibility using only
a limited number of parameters extracted from the received
video bitstream. As a decision tree was used, a binary clas-
sification is made. The work presented in this paper further
elaborates on the data obtained during our previous work.
However, instead of determining impairment visibility we are
now interested in estimating how end users would rate the
visual quality of the video sequences. As such, our goal is
to construct a video quality metric which predicts perceived
quality and correlates well with the MOS obtained during
subjective quality assessment.

III. GP-BASED SYMBOLIC REGRESSION

In this section, a novel ML technique [genetic programming
(GP)-based symbolic regression method [34]] is proposed to
model the perceived quality, as an alternative to modeling
the different complex properties of the HVS. As the name
suggests, this method is applied to model the MOS score by
means of a regression approach (not classification). A key
advantage of this method is that the resulting metrics are
essentially white-box models that comprise only the variables
that are truly influential. Moreover, the metric can provide
human insight into the underlying principles of subjective
video quality assessment.

A. Goal Statement and Notation

GP-based symbolic regression offers the unique capability
to compute nonlinear white-box models that predict the MOS
quality rating ¢ of a video fragment in terms of several
input variables v = {v,,}flv:l. These variables v identify the
characteristics of the sequence and quality degradation factors,
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and comprise only those parameters that can be extracted from
the received video bitstream without the need for complete
decoding. Given a limited set of M video sequences, a sparse
set of data samples S is obtained, which can be represented
as a set of tuples S = {(V, qm)}%zl. Symbolic regression is
then used to compute a set of models f that predict the MOS
quality scores g in terms of the parameters v [35]

FRY > R, f@n) ~ g (1)

A set of models is calculated, because this allows us to
determine the importance of variables in a reliable way. As
suggested by El Khattabi ez al. [21], one should only retain the
relevant input variables, in order to reduce the computational
cost and to limit the model complexity. The importance of
carefully selecting the input variables for subjective video
quality assessment was also highlighted in [35]. After discard-
ing the redundant variables, a new set of models is computed
using only the most important variables and the best model
is returned as the final solution. Note that for the actual im-
plementation, we made use of the DataModeler package [36]
for Mathematica, because it offers the integrated functionality
for automatic variable selection and dimensionality analysis,
variable contribution analysis and set-based predictions.

B. Outline of Evolutionary Algorithm

This section explains some algorithmic details on how the
set of models can be computed in a reliable way. GP-based
symbolic regression is a biologically inspired method that
mimics the process of Darwin’s evolution theory and the
mechanisms of genetic variation and natural selection [37].
It is based on the concept of genetic programming, and
computes a set of tree-based regression models that give a
good approximation of the sparse subjective video quality data
S. The evolutionary algorithm consists of the following steps.
1) Model initialization: In the first generation step (r = 1),
an initial population of K randomly generated parse
trees P! = { fk(B)}f:l (also called models or indi-
viduals) with a maximal arity of 4 is formed. Each
parse tree f;(v) represents a potential solution to the
approximation problem, and is composed of multiple
nodes that comprise primitive functions and terminals.
The primitive functions are represented by the standard
arithmetic operators (+, —, %, /, inv, pow, sqrt, In, exp),
whereas the terminals consist of the input variables v
and real constants drawn from the interval [—5, 5]. All
the input variables v are scaled into the range 0-2.

2) Model evaluation: In order to measure the fitness of a
particular individual, an operator Z is defined that maps
each model onto the space of two design objectives

Z: fi® € P' = (i(fir0), 2(f)) € ©®  (2)
a) Objective 1 aims to minimize the prediction error

2(fi@) = 1 — R*(q, fi(©)) 3)
where R represents the correlation coefficient

cov(q - fi(¥))

Rig. )= std(g) - std( fi(?))

“)
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3)

4)

TABLE I
PARETO GP EXPERIMENTAL SETTINGS

Setting Values
No. of replicates 5
No. of generations 310
Population size 1000
Archive size 100
Crossover rate 0.9
Subtree mutation rate 0.1
Population tournament 5

b) Objective 2 aims to minimize the expressional
model complexity z>(fx(D)), which is defined as
the sum of the number of nodes in all subtrees of
a given tree. This objective penalizes complexity
and avoids the excessive growth of models over
time.

Both criteria are often conflicting, so the goal is to obtain
models that make a good tradeoff and perform well on
both objectives. This idea is motivated by Occam’s razor,
which states that simpler models are preferable to more
complex ones if they explain the data sufficiently well.
Model archiving and elitism: Next to the population
P!, the algorithm also maintains a fixed-size archive
A' that contains the best performing models discovered
so far. This archive serves as an elistism strategy to
ensure that the fittest models of the population are
carried forward from one generation to the next. In each
generation step ¢, the archive A’ is updated by selecting
the least-dominated models from the joint set A’~'U P!,
where initially A = ¢. Note that a model f;(v) is said
to dominate a model f>(?) in the objective space © if
f1(¥) is no worse than f>(?) in all the objectives, and
strictly better in at least one of the objectives

Vi=1,2:z:(fi®) < zi( f>(D)) Q)

3j € {1,2}: 2;(f10) < z;(/2(D)) (6)

(Models that are not outperformed by any other model
in terms of both objectives are Pareto-optimal models)
Model evolution: In each step ¢t of the algorithm, a
set of individuals is chosen by means of a Pareto
tournament selection operator. These individuals are
exposed to genetic operators (such as crossovers and
mutations), in order to create the population P™*! of
the next generation step. The crossover operator selects
two parent individuals and combines them to create
new offspring by swapping subtrees, whereas the mu-
tation operator makes a random alteration to nodes of
a subtree. At each generation, archive members (A’)
are merged with the newly created population (P’), and
variation operators are applied to the aggregated set
of models. Selection of individuals for crossovers and
mutations happens by means of Pareto tournaments. This
archive-based selection preserves genotypic diversity of
the individuals. New individuals are generated using a
subtree crossover with rate 0.9, and subtree mutation
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TABLE 11
CHARACTERISTICS OF THE EIGHT SELECTED TEST SEQUENCES

Sequence Source Description
basketball CDVL Basketball game with score. Camera pans
and zooms to follow the action.

BBB* Big Buck Bunny Computer-Generated Imagery. Close-up of a
big rabbit. Slight camera pan while follow-
ing a butterfly in front to the rabbit.

cheetah CDVL Cheetah walking in front of a chainlink
fence. Camera pans to follow the cheetah.

ED* Elephants Dream Computer-Generated Imagery. Fixed camera
focusing on two characters. Motion in the
background.

Sfoxbird3e CDVL Cartoon. Fox running toward a tree and
falling in a hole. Fast camera pan with zoom.

purplede CDVL Spinning purple collage of objects. Many
small objects moving in a circular pattern.

rush hour TUM Rush hour in Munich city. Many cars mov-
ing slowly, high depth of focus. Fixed cam-
era.

SSTB* Sita Sings Cartoon. Close-up of two characters talking.

the Blues Slight camera zoom in.

with rate 0.1. Every 10 generations, the population gets
re-initialized to provide diversity and avoid inbreeding.
This evolutionary process is repeated over many generation
steps (t =1, ..., T), in order to create models with increasing
fitness, based on the survival-of-the-fittest principle. The set-
tings of the algorithm are illustrated in Table 1. After a certain
stopping criterion is met (e.g., a time budget), the algorithm
is terminated. All the archives A’ in each run are aggregated
into a compound archive A, and the nondominated individuals
in A are used to form a super Pareto front of models. This set
of models is then returned as the final result.

IV. SUBJECTIVE VIDEO QUALITY EXPERIMENT

In order to validate the method, a subjective video quality
experiment was conducted. During the experiment, a number
of test subjects had to evaluate the visual quality of a number
of impaired video sequences. This section provides details
of the experiment, as well as the selection, encoding, and
impairing of the different video sequences that were used.

A. Source Video Sequence Selection

As a base for the subjective experiment, eight freely avail-
able source video sequences were selected. These sequences
were obtained from open source movies, the Consumer Digital
Video Library (CDVL) [38] and the Technical University
of Munich (TUM). All sequences were in full 1080p HD
resolution (1920 x 1080), with a frame rate for 25 f/s and
a duration of exactly 10s. An overview of the different source
sequences is shown in Fig. 2, and a short description of their
characteristics is provided in Table II. Marked sequences ()
were taken from an open source movie.

It is generally known that certain video characteristics,
i.e., the amount of motion and the amount of spatial details,
influence the perceptibility of visual degradations [39], [40].
Therefore, it was ensured during the subjective video quality
assessment that these video sequences have different amounts



1326

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 23, NO. 8, AUGUST 2013

Fig. 2. Overview of the eight selected source video sequences, taken from open source movies, CDVL and TUM. (a) basketball. (b) BBB. (c) cheetah.

(d) ED. (e) foxbird3e. (f) purplede. (g) rush hour. (h) SSTB.

304 .baskelball

o ofoxbird 3e

cheetah *purplede

*BBB

.
rush hour L]

0 10 20 30 40 S0 60 T0 80 90

Q381

Fig. 3. Calculated Q3.SI and Q3.TI values for each sequence [41].

of motion and textures [6]. For quantifying the amount of
motion and spatial details in a video sequence, two perceptual
metrics are defined in ITU-T Recommendation P.910: the
spatial perceptual information (SI) and the temporal perceptual
information (TI). These measurements are calculated frame-
by-frame and the maximum value is taken as overall SI
and TI value for a particular video sequence. However,
Ostaszewska et al. [41] showed that the overall SI and TI of
a video sequence can be better approximated by taking the
upper quartile value instead of the maximum value as this
eliminates the influence of peak values (caused by, e.g., scene
cuts). Hence, the SI and TI value of a video sequence were
calculated as follows:

03.81 = Upperquartile; . {stdevpace[Sobel(F,)]}.  (7)

03.TI = Upperquartile;,, . {stdevspace [ M, (i, )]}, ®)

where M, (i, j) = F,(i, j) — Famr (i, J).
Fig. 3 visualizes the calculated Q3.SI and Q3.7 values for
each of the selected sequences.

B. Encoding and Impairment Generation

The paper is focused on the estimation of perceived quality
for HD H.264/AVC encoded video sequences. In order to use

ave-reader »| avc-packetizer |
nalu-drop
classifier
writer < avc-unpacketizer e

Fig. 4. RTP packets, which carry data from particular slices, are dropped
using the nalu-drop classifier component. After unpacketizing, the resulting
impaired sequence is saved to a new file.

realistic encoder settings, the settings used for HD content
available from online video services and websites were an-
alyzed. Furthermore, the default settings recommended by a
number of commercially available H.264/AVC encoders were
investigated. Based on this analysis, x264 was used with the
following settings for encoding the video sequences:

1) number of slices: 1, 4, and 8;

2) number of B-pictures: 0, 1, and 2;

3) GOP size [42]: 15 (0 or 1 B-picture) or 16 (2 B-pictures);
4) closed GOP structure;

5) bit rate: 15 Mb/s.

This results in a total number of nine different encoder con-
figurations. Each encoded video sequence was also carefully
visually inspected to ensure no encoding artifacts were present.

The open source streamer Sirannon [43] was used to impair
the encoded video sequences. First, the raw H.264/AVC Annex
B bitstream was packetized into RTP packets according to
RFC3984. Then, slice losses were simulated by dropping all
RTP packets carrying data from that particular slice.’Finally,
the stream was unpacketized and the resulting impaired bit-
stream was saved to a new file. This process is illustrated in
Fig. 4.

It is also possible to use different configurations for drop-
ping slices, by considering on the following parameters:

1) number of B-pictures (0, 1, 2);

2) type of first lost slice (I, P, B);

3) location within the GOP of the loss (begin, middle, end);

4) number of consecutive slice drops (1, 2, 4);

2Entire slices should be dropped in order for the bitstream to remain
compliant with Annex B as specified in the H.264/AVC video coding standard.
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Fig. 5. Typical trail structure of an SS subjective quality experiment defines
the order how sequences are displayed and rated by the subjects.

5) location within the picture of the loss (top, middle,
bottom);
6) number of consecutive entire picture drops (0, 1).

An experimental design was used to select a subset of
48 representative impairment scenarios which are applied to
the eight selected sequences. This resulted in a total amount
of M = 384 impaired video sequences. Note that no visual
impairments were injected in the first and last two seconds of
video playback. The interested reader is referred to [33] for
more details on the experimental design.

For decoding the impaired sequences, a modified version
of the JM Reference Software version 16.1 was used, which
implements frame copy as concealment strategy [44], [45].

C. Subjective Quality Assessment Methodology

The different encoded and impaired video sequences were
presented to human subjects using a single stimulus (SS) ab-
solute category rating (ACR) subjective assessment methodol-
ogy, as specified in ITU-T Rec. P.910 [6]. The SS methodology
implies that all sequences are presented one-after-another, as
depicted in Fig. 5. Immediately after watching each sequence,
subjects are required to evaluate the quality of that particular
sequence using a five-grade ACR scale with adjectives.

Before the start of the experiment, all subjects received
specific instructions on how to evaluate the different video
sequences. [shihara plates and a Snellen chart were used to test
the users for visual acuity and normal vision. Three training
sequences were presented to indicate the typical impairments
that they could perceive during the experiment and to get the
subjects familiarized with the test software. The quality ratings
that were assigned to these test sequences are not taken into
account when analyzing the results. The sequences that had
to be evaluated were divided into six distinct datasets, each
containing 76 sequences. This limited the experiment duration
to 20 min. Subjects were encouraged to evaluate more than one
dataset, although not necessarily on the same day. The order
in which the sequences were presented was randomized at the
start of the experiment. This way, no two subjects evaluated
the sequences in exactly the same order.

The experiment was conducted inside an ITU-R BT.500 [7]
compliant test environment. A 40 inch full HD LCD television
was used to display the sequences. The test subjects were
seated at four times the picture height (4H) from the screen.

Forty nonexpert subjects participated in the experiment: 11
were females and 29 were male subjects. The age of the
subjects ranged from 18 to 34 years old. Most subjects eval-
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Fig. 6. Approach of using GP-based symbolic regression for estimating
perceived video quality. After determining variable importance, a final set
of candidate models is generated after which, the best model is selected for
estimating video quality.

Eq. (9)

(Test set)

uated more than one dataset, and each dataset was evaluated
by exactly 24 subjects. The postexperiment screening method
detailed in Annex V of the VQEG HDTV report [15] was used
to ensure no outliers were present in the response data.

V. MODELING PERCEIVED VIDEO QUALITY

This section presents the results of using GP-based symbolic
regression to model the perceived video quality.

First, all parameters extracted from the received video
bitstream are made available to the modeling process. Next,
based on the set of generated GP models, variable impor-
tance is determined. A new set of models is then generated
using only the most important variables. Finally, from the
resulting set of GP models, the best model is selected for
predicting video quality. This approach is visually presented
in Fig. 6. This section is concluded by a comparison between
the presented approach and other existing ML techniques.
The performance of the metric is also validated on existing
benchmark databases.

A. Listing of the Parameters

The focus of this paper is the construction of an NR
bitstream-based objective video quality metric. Hence, only
parameters that can be extracted or calculated from the re-
ceived video bitstream, without the need for complete de-
coding, are considered. This set comprises N = 42 different
parameters that are subdivided into the following three cate-
gories:

1) describe the encoder settings;

2) identify the location and severity of the loss;

3) characterize the video content.

A complete listing of the parameters is provided in Table III.

Note that the parameter drift represents the temporal
duration (extent) of the loss, i.e., the number of frames which
are affected by the loss. If a loss occurs in an I-picture, the
loss is propagated through the entire GOP. B-pictures are in
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TABLE III

OVERVIEW OF PARAMETERS EXTRACTED FROM RECEIVED VIDEO BITSTREAM IN ORDER TO IDENTIFY LOCATION OF LOSS AND TO

CHARACTERIZE VIDEO CONTENT

Parameter

Description

Encoder settings

B-pictures, slices, GOP

Number of B-pictures, slices per picture and GOP size as specified during encoding.

Loss location and severity

i_loss, p_loss, b_loss

Indication (1 or 0) whether the loss originates from an I-, P- or B-picture.

perc_pic_lost

Percentage of slices lost of the picture where the loss originates.

imp_in_gop_pos, imp_in_pic_pos

Temporal location within the GOP (begin, middle, end) and spatial location within the picture (top, bottom,
middle) of the first lost slice.

imp_in_gop_idx, imp_in_pic_idx

Absolute position within the GOP and within the picture of the first lost slice.

imp_ cons_slice_drops,
imp_cons_b_slice_drops,
imp_pic_drops

Number of consecutive slice drops, number of consecutive B-slice drops and number of entire picture drops.

drift

Temporal duration of the loss.

Video content characteristics

perc_pb_4 x 4, perc_pb_8 x &,
perc_pb_16 x 16, perc_pb_8 x 16,
perc_pb_16 x 8, perc_i_4 x 4,
perc_i_8 x 8, perc_i_16 x 16

Percentage of I, P & B macroblocks of type 4 x 4, 8 x 8, 16 x 16, 8 x 16, and 16 x 8, averaged over the
pictures in the GOP containing the loss.

perc_i_mb, perc_skip, perc_ipcm

Percentage of macroblocks encoded as I, skip and PCM, averaged over the pictures in the GOP containing the
loss.

I_perc_4 x 4, I_perc_8 x 8,
I_perc_16 x 16

Percentage of macroblocks of type 4 x 4, 8 x 8 and 16 x 16 in the first I or IDR picture of the GOP containing
the loss.

abs_avg_coeff, avg_qp

Absolute average value of the macroblock coefficients and QP value, averaged over the P or B pictures in the
GOP containing the loss.

I_abs_avg_coeff, I_avg_qp

Absolute average value of the macroblock coefficients and QP value in the first I or IDR picture of the GOP
containing the loss.

perc_zero_coeff, I_perc_zero_coeff

Percentage of zero coefficients, averaged over the P or B pictures in the GOP containing the loss and average
of zero coefficients in the first I or IDR picture of the GOP containing the loss.

avg_mv_X, avg_mv_y,
stdev_mv_x, stdev_mv_y
avg_mv_xy, stdev_mv_xy

Average absolute motion vector length and standard deviation in x- and y-direction, averaged over the P or B
pictures in the GOP containing the loss. Motion vector magnitudes have quarter pixel precision.

Average and standard deviation of the sum of the motion vector magnitudes in x- and y-direction, averaged
over the P or B pictures in the GOP containing the loss. Motion vector magnitudes have quarter pixel precision.

perc_zero—_myv

Average percentage of zero motion vectors, calculated over the P or B pictures in the GOP containing the loss.

Subset of eight influential parameters is marked in bold.

TABLE IV
CALCULATED AVERAGE DRIFT (WITH STANDARD DEVIATION) CAUSED
BY LOSSES IN P-PICTURES, IN RELATION TO THE LOCATION WITHIN THE
GOP OF THE P-PICTURE

Location within GOP

BEGIN MIDDLE END
avg(drift) 14 9 4
stdev(drift) 1 2 2

our case never used as reference. Hence, losses in B-pictures
only affect one picture and do not propagate any further. The
temporal extent caused by losses in P-pictures depends on the
location of that particular picture within the GOP. Based on
our created video sequences (as detailed in Section IV-B), we
calculated the average drift caused by losses in P-pictures, in
relation to the position of that picture within the GOP. Hence,
drift is calculated in the pixel domain as the number of pictures
containing a visual distortion. The calculated values are listed
in Table IV.

As indicated in Table III, all parameters are calculated
based on the GOP containing the loss. If a loss occurs in
an I-picture, statistics are calculated using the remaining P-
and B-pictures. In case the loss occurs in a P-picture, the
parameters are calculated using the I-picture and the remaining

P-pictures in the GOP (except for the P-pictures where the loss
originates from). This is similar when the loss originates from
a B-picture, in which case the I- and B-pictures are used for
calculating the statistics.

B. Identifying the Importance of Variables

First, all parameters are used during the modeling proce-
dure, and the resulting set of models is shown in Fig. 7. Models
that lie on the Pareto front are marked in black and represent
the best individuals in the population [46]. The plot illustrates
that an increase in model complexity often results in more
accurate predictions, and it shows that the model prediction
error saturates around 0.09. It is, however, found that variables
that are not truly significant are often present in reasonable
quantities in the final models. The presence of insignificant
variables in regression models is usually undesired, because it
can lead to overfitting and models that are very complex to
interpret. There are multiple reasons why such variables can
be present in models: due to the stochastic nature of the GP
algorithm, insignificant variables that disappeared from models
during the evolutionary run still have a chance to come back by
means of the random mutation operator. On some occasions,
insignificant variables are present in low-order metavariables
evaluating to an important constant.
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Fig. 7. Set of GP models generated using all parameters extracted from the
video bitstream. Models on the Pareto front are marked in black.

Fortunately, there is a robust way to overcome this problem.
The DataModeler environment offers the variable contribu-
tion analysis function that estimates the contribution of each
variable into the prediction error of each individual symbolic
regression model, based on the rate of change in the relative
prediction error when the variable is present or removed from
the model. It estimates the contribution of each variable to
each model in the set and aggregates all the results. Fig. 8
demonstrates the quantitative characteristics of the variable
contribution. For example, a variable contribution of 120% for
variable drift means that the removal of this variable from
a model causes on average a 120% increase in the prediction
error. This implies quantitatively that drift is a highly im-
portant variable, which clearly agrees with the common sense
and domain knowledge. In order to determine the actual drift
accurately, pixel data should be reconstructed. However, in this
paper, we are targeting a bitstream-based video quality metric
which does not require a decoding (= pixel reconstruction)
of the video stream. Therefore, it was decided to omit this
parameter as well and to use only the parameters that can
exactly be extracted and calculated from the received encoded
video bitstream.

The results of the variable contribution analysis show that
there are N = 8 influential parameters for modeling perceived

video quality: perc_pic_lost, i_loss, slices,
p_loss, B_pictures, imp_cons_slice_drops,
I_perc_8x8 and perc_i_8x8. Interestingly, these

parameters largely correspond with the variables that were
used in our previous work [33] for modeling the impairment
visibility in H.264/AVC encoded HD video sequences.

C. Final Modeling of Perceived Quality

The variable contribution analysis is most beneficial, since
it identifies that only 20% of video bitstream parameters are
causing significant changes in the video quality perception.
This information is of high value because it significantly
decreases the problem dimensionality, and focuses future
research. In this section, a final modeling step is applied
to construct an objective quality metric using only the most
important variables as determined in the previous section.

In order to compute an interpretable model that uses only
these influential variables, the data set S is divided into a
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Fig. 8. Contribution of each variable into the prediction error of the regres-
sion models when removing that particular variable from the model.
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Fig. 9. Set of GP models generated using only the selected influential

parameters. Models on the Pareto front are marked in black.

disjoint training (60%), validation (20%), and test (20%) set.
The training set is used to generate new models based on
the subset of eight parameters and the results are depicted
in Fig. 9. It shows that the models are able to fit the data
using much less variables without suffering a significant loss
in accuracy.

All models that lie on the Pareto front are now candidate
models for predicting video quality. In order to pick the best
model from the set, all Pareto-optimal models in Fig. 9 are
evaluated on the validation set. Fig. 10 plots the prediction
error between predicted and actual MOS against model’s
complexity for each Pareto optimal models evaluated on the
validation set. Model complexity is computed as the total sum
of nodes in all the subtrees of the parse tree representation
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Fig. 10. Prediction error versus model complexity for each Pareto efficient
model identified using the validation set. The arrow indicates the final selected
model.
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Fig. 11. Predicted MOS equation (9) versus actual MOS over the test set.

of that particular model. In order to select the final model,
a tradeoff must be made between model complexity and
accuracy. Based on the plot in Fig. 10, it can be seen that
the performance saturates of the Pareto optimal models with
a complexity of 60 or more. Therefore, we selected the final
model (indicated by the arrow in Fig. 10) as the point in the
graph after which there is no significant gain in prediction
accuracy. This corresponds with the point located near the
‘elbow’ of the plot.

The performance of the final model is then assessed by
evaluating it over the test set that contains previously unseen
data. For each data sample in the test set, the predicted MOS
(MOS)) is compared to the actual MOS (g) and the result is
depicted in Fig. 11. The Pearson correlation coefficient R over
the test set is 0.9003 with a root mean squared error (RMSE) of
0.5663, which confirms that the final model is indeed capable
of predicting perceived quality with a high accuracy, using
only a limited number of parameters extracted solely from the
received encoded video bitstream.

D. Objective Video Quality Metric

The parse tree corresponding with the final selected model
is depicted in Fig. 12. This tree can easily be translated to the

/f:

1.079 pere_pic_lost

Fig. 12. Parse tree corresponding with the selected GP model indicated in
Fig. 10.

algebraic expression shown in (9).

In this model, only four parameters are present for estimat-
ing video quality, since only models with a higher complexity
use all eight parameters. This formula computes the predicted
MOS as a large constant from which multiple terms are
subtracted. Each term is weighted by the type of picture where
the loss originates from. Losses originating in I- or P-pictures
cause a drop in perceived quality.

In the case losses occur in B-pictures, perceived quality
equals 4.615. In previous research [33], we found that losses
in B-pictures are never perceived. As such, the quality is not
influenced. The fact that, in this case, perceived quality does
not equal 5 (i.e., excellent quality) can be explained by the
fact that subjects tend to avoid using the extremes of the rating
scales [47] during the subjective video quality evaluation. This
effect is also known as the saturation effect [48].

In general, losses in I-pictures will result in a higher
drop in quality due to the drift (=spatial extent) caused by
the decoding dependencies with other pictures in the GOP.
Losses of entire I-pictures are rated higher quality compared
to losing only a certain portion of the picture. This matches the
conclusions of [33] where it was found that dropping an entire
picture and relying on the error concealment strategy might
benefit quality perception. In the case of similar consecutive
pictures, frame freezes can be used as an efficient concealment
technique [49].

When losses originate from P-pictures, the drop in perceived
quality is further depending on the amount of slices per picture
and the amount of slices lost. For the same amount of the
picture lost (perc_pic_lost), a higher number of slices
per picture will result in a slightly higher drop in quality. This
again matches with the earlier findings [33] that impairment
visibility of loosing up to half a picture depends on the number
of encoded slices in that particular picture, i.e. impairments are
easier detected in sequences encoded with multiple slices.

E. Performance Comparison

In this last section, the results of the GP-based symbolic
regression approach are compared to several state-of-the-art

MOS, =4.615—0.548 - (20 - i__loss - (1.079 — perc__pic__lost) - perc_pic_lost +imp _cons_slice _drops - perc_pic_lost - p_loss)

®
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TABLE V
PEARSON LINEAR CORRELATION COEFFICIENT (PLCC), SPEARMAN RANK-ORDER CORRELATION COEFFICIENT (SROCC) AND PREDICTION ERROR
1 — R? USING DIFFERENT MODEL TYPES

Training Validation Test All

Model type PLCC | SROCC Error PLCC | SROCC Error PLCC | SROCC Error PLCC | SROCC Error

GP metric (4) | 0.9047 | 0.75107 | 0.1814 | 0.8619 | 0.8288 | 0.2571 | 0.9003 | 0.8447 | 0.1895 | 0.8961 0.7961 0.1969
ANN (42) 0.9680 | 0.9164 | 0.0629 | 0.8975 | 0.8827 | 0.1945 | 0.8551 | 0.8363 | 0.2688 | 0.9310 | 0.8990 | 0.1333

ANN (8) 0.9330 | 0.8522 | 0.1294 | 0.8540 | 0.8284 | 0.2707 | 0.8712 | 0.8115 | 0.2411 | 0.9057 | 0.8447 | 0.1797

ANN (4) 09111 0.7829 | 0.1699 | 0.8567 | 0.8330 | 0.2661 | 0.8931 | 0.8231 0.2023 | 0.8977 | 0.8077 | 0.1941

SVR (42) 0.9665 | 0.9341 | 0.0660 | 0.9159 | 0.8746 | 0.1612 | 0.9270 | 0.8829 | 0.1407 | 0.9486 | 0.9076 | 0.1002

SVR (8) 0.9225 | 0.8489 | 0.1490 | 0.8590 | 0.8390 | 0.2621 | 0.9012 | 0.8394 | 0.1879 | 0.9065 | 0.8489 | 0.1783

SVR (4) 0.9107 | 0.7959 | 0.1706 | 0.8609 | 0.8202 | 0.2588 | 0.8713 | 0.8188 | 0.2408 | 0.8946 | 0.8089 | 0.1998

ML techniques. To this end, the same training, validation, and TABLE VI

test sets are used as in the previous section. Two different
model types are investigated and the results are listed in
Table V.

1) The first model type is a two-layer feedforward artificial
neural network (ANN) with sigmoid hidden neurons
and linear output neurons. It is found that this network
topology is able to approximate the nonlinear function
f(9) sufficiently well. Based on experimental results, the
number of neurons in the hidden layer is set to 4 and
the weights of the neural network are computed with the
Levenberg—Marquardt backpropagation algorithm [50].
The second model type is the SVR model used by
Narwaria et al. [27]. Each attribute of the input vector D
is scaled to [0, 1] and the following model is computed:

2)

k
f@) = (f —a)K@;, 1) +b (10)
i=1
where K is chosen to be a radial basis function kernel
that maps the problem from a lower dimensional space

to a higher feature space and b is a real constant.

K(¥;, 9) = exp(—y I5; — 0%,y > 0 (11)

The variables «; and « are optimized by maximizing a
constrained quadratic function, and the constants y and
C are selected from a grid of increasing values. The
reader is referred to [51] for a detailed discussion of the
algorithm.

As can be seen from Table V, the accuracy of the GP-
based symbolic regression metric [see (9)] yields performance
results that are comparable to, or better than the ANN and
SVR algorithms. A key advantage of the GP approach is
that it provides a natural way for variable selection and
yields interpretable models. Discarding redundant variables is
important, as it reduces the dimensionality of the problem.
Numerical results in Table V confirm that models which are
based on the subset of 8 (or even 4) parameters are indeed
sufficiently accurate to characterize the perceived quality.

When providing all available parameters to the modeling
process, the SVR model achieves a slightly higher accuracy.
However, this requires an in-depth processing of the received
video stream. This, in turn, increases model complexity. In the
case of real-time monitoring, models using parameters which
do not require in-depth processing are preferred.

PERFORMANCE EVALUATION OF OUR PROPOSED METRIC, PSNR AND
VQM AGAINST THE EPFL-POLIMI VIDEO DATABASE

PLCC SROCC Pred. error
GP metric 0.8816 0.8830 0.2227
PSNR 0.7374 0.7463 0.4562
VQM 0.8127 0.8344 0.3395

F. Model Validation

The validity of the proposed metric (9) has also been
checked by applying it to the publicly available EPFL-PoliMI
video quality assessment database [52], [53]. This database
contains, 72 4CIF resolution (704x576 pixels) and 72 CIF
resolution H.264/AVC encoded video sequences impaired at
different packet loss rates. The MOS scores which are pre-
dicted by our metric [see (9)] are compared to the MOS scores
in the database, and the PLCC, the SROCC and the prediction
error (1 — R?) are computed. The performance of our metric
is also compared against two well known FR quality metric,
namely PSNR and VQM [23], for benchmarking.

It is seen from Table VI that the metric yields a very
good agreement, which confirms that the metric has good
generalization properties and that it also works well on similar
video sequences. Comparing the performance of our metric
against PSNR and VQM measurements show that our NR
bitstream-based metric achieves a higher accuracy in estimat-
ing perceived quality.

VI. CONCLUSION

In this paper, a novel machine learning technique for
constructing a no-reference bitstream-based objective video
quality metric was proposed. Genetic programming-based
symbolic regression was used to generate sets of white box
models for estimating perceived quality. This, in turn, yielded
interpretable models and allowed automatic selection of the
most quality-affecting parameters. The modeling technique
does not make any a priori assumptions on the functional
form or the complexity of the final model(s). Since the focus
of the paper is a no-reference bitstream-based metric, only
parameters that can be extracted from the received encoded
video bitstream without the need for complete decoding are
taken into account during the modeling process.
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In total, 42 different parameters were extracted from the
bitstream characterizing the encoding settings, the type of
loss and the video content. Based on the variable contribution
analysis of the modeling toolkit, it was found that only 20%
of these parameters significantly influence perceived quality.
Modeling results confirmed that the perceived quality can be
estimated accurately using only a very limited number of pa-
rameters. This enables real-time no-reference-based objective
video quality monitoring for video service providers.
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