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Abstract. Complex real-world systems can accurately be modeled by simulations. Evaluating
high-fidelity simulators can take several days, making them impractical for use in optimization, de-
sign space exploration, and analysis. Often, these simulators are approximated by relatively simple
math known as a surrogate model. The data points to construct this model are simulator evaluations
meaning the choice of these points is crucial: each additional data point can be very expensive in
terms of computing time. Sequential design strategies offer a huge advantage over one-shot experi-
mental design because information gathered from previous data points can be used in the process of
determining new data points. Previously, LOLA-Voronoi was presented as a hybrid sequential de-
sign method which balances exploration and exploitation: the former involves selecting data points
in unexplored regions of the design space, while the latter suggests adding data points in interesting
regions which were previously discovered. Although this approach is very successful in terms of the
required number of data points to build an accurate surrogate model, it is computationally intensive.
This paper presents a new approach to the exploitation component of the algorithm based on fuzzy
logic. The new approach has the same desirable properties as the old method but is less complex,
especially when applied to high-dimensional problems. Experiments on several test problems show
the new approach is a lot faster, without losing robustness or requiring additional samples to obtain
similar model accuracy.
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inference systems
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1. Introduction. To avoid many real-life experiments and countless prototypes,
modern engineering problems rely heavily on highly accurate computer simulations
to reduce costs, time, and (potentially) risks. The simulations are used to help the
engineer understand the relation between inputs and the outputs of the system, and
to identify interesting regions in the design space.

The downside of using high-accuracy simulations is that one simulation of a com-
plex system with several inputs (commonly referred to as variables), and outputs (also
called responses) can be very expensive in terms of computation time [18, 14]. These
lengthy or expensive computations often make it impractical to use simulations di-
rectly for design exploration and gaining insight into the complex system behavior.
Most optimization algorithms require many simulations in the search space which
makes optimization a computationally expensive task.

An extra abstraction layer can be used to expedite the process. The simulator
(which approximates the real world) is approximated by surrogate models (also known
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FUZZY HYBRID SEQUENTIAL DESIGN A1021

as response surface models or metamodels). These computationally cheap replacement
models can be used to analyze or optimize the complex system while minimizing the
required number of expensive simulations. For this study, we make two assumptions:
the simulator is deterministic which means that running the simulation twice with
the same input parameters always produces the same results. Second, the complex
system is treated as a gray or black box (little or nothing is known about the inner
working of the system).

Surrogate models can be used for optimization: in this context a local surrogate
model is constructed to guide an optimization algorithm towards an optimum. Af-
terwards, the model is no longer of use and discarded. This is not the case in global
surrogate modeling, which aims to construct a model that approximates the behavior
of the system over the entire domain. This surrogate model can afterwards be used
instead of the expensive simulator.

The simulator can be defined as an unknown function f : Rd → C, which maps a
d-dimensional input vector of real inputs to a possibly complex output. This function
is sampled at a discrete set of N data points: P = {p1,p2, . . . ,pN }. These data
points (called the experimental design) are evaluated by the simulator and their re-
sponses are denoted as F = { f(p1), f(p2), . . . , f(pN ) }. Based on this information a
surrogate model f̃ is chosen from a set of candidate approximation functions. This
choice is usually guided by predefined quality criteria (such as cross validation). Since
acquiring the responses is computationally expensive but necessary to build an ac-
curate surrogate model, the goal is to keep the set P as small as possible while still
obtaining good accuracy. The choice of the data points in P is of crucial importance
for constructing an accurate surrogate model with a reduced number of points. In-
tuitively, the data points should be spread over the domain in such a way that they
capture a maximum amount of information on the behavior of f . Since f is considered
to be a black box, this is a difficult task.

The LOLA-Voronoi algorithm [8, 7], an earlier proposed hybrid iterative scheme
that distributes the points to cover the design space and distributes the data density
proportional to the nonlinearity of f has proven to be very useful in several studies in
several fields [1, 10, 28, 23, 2, 11, 27]. Nonlinear regions are more difficult to model,
so the additional data points in these regions greatly help the search for a good
approximation f̃ . The algorithm combines an approach that estimates the gradient
in the data points (based on a local linear approximation—LOLA), and a Voronoi
space-filling approach. The downside of the LOLA algorithm is that it becomes very
computationally demanding for high-dimensional design spaces. In this paper we
propose a new fuzzy-based approach to overcome this issue. This approach can replace
LOLA without further modifications to the concept of LOLA-Voronoi.

2. Sequential design. The selection of data points can be determined by means
of a one-shot approach: all points are chosen at once and simulated. These data are
given to the modeling algorithm and a surrogate model is constructed. The locations
of the points in the design space is called the design of experiments (DoE). One-shot
designs of computer experiments are usually space filling meaning they try to cover
the domain as equally as possible. Examples are (maximin) Latin hypercubes [24]
and fractional designs [25].

Sequential designs turn the one-shot approach into an iterative process. The
data acquired and/or the constructed models from previous iterations are analyzed
in order to intelligently select locations for new data points. These additional points
are evaluated and usually new models are constructed. Sequential design has two
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A1022 VAN DER HERTEN, COUCKUYT, DESCHRIJVER, AND DHAENE

important benefits over one-shot designs: first of all, it is impossible to have too few
or too many points; the iterative process is halted when the objectives are reached
(i.e., the surrogate model meets the predefined accuracy goals [15]). In a one-shot
setting too few points means restarting the process, whereas too many points means
wasting time due to evaluating an expensive simulator more than required. Second,
the information provided by the intermediate simulator responses and constructed
models can be used to identify regions that are difficult to model. This allows the
sampling distribution to be guided towards these regions.

2.1. Exploration and exploitation. Any sequential design method faces the
trade-off between exploration and exploitation. Exploration involves exploring the
complete design space for key regions such as discontinuities, steep areas, optima,
and stable regions that have not yet been identified. Usually exploration does not
look at system responses and focuses on filling the design space as evenly as possible.
Undersampling and oversampling no longer occur when exploring the design space
sequentially. Examples of sequential exploration methods can be found in [6]. Ex-
ploitation on the other hand analyzes simulator responses and/or constructed models
in sample regions that have been identified as interesting. One could sample near op-
tima or discontinuities to capture the complex behavior, or sample in regions where
intermediate surrogate models make large errors. Examples of methods that involve
exploitation of the available experimental design information can be found in [9, 20].

These two concepts conflict with each other: exploration aims to look away from
regions we already know and focus on unexplored areas, whereas exploitation does
the opposite and gathers more information about irregularities that have been spotted
previously. If a sequential design only focuses on exploitation, certain key regions are
potentially missed as the sequential design strategy is stuck sampling a region that
was identified previously. To reduce this risk we could specify a large initial space-
filling design, but this might result in oversampling the design space. Only focusing
on exploration disallows the sampling distribution to be modified towards interesting
regions as we end up with a sequential space-filling design. Finding a balance between
exploration and exploitation can be done in many different ways, and can also be
application dependent.

3. Exploitation using local approximations. Exploitation includes the re-
sponses from previous points to guide the sequential design process to interesting
regions in the design spaces. The definition of interesting regions depends entirely
on the context of the surrogate modeling process: for instance, for optimization in-
teresting regions are those (possibly) containing optima. In the context of accurate
global surrogate modeling this means distributing a minimal amount of points to find
a model which accurately represents the systems response over the entire design space.

Previously, the LOLA algorithm was introduced to guide the sampling process
towards regions in the domain that may be more difficult to approximate [8, 7]. Often,
systems have a very linear response in a large part of the design space, but have one or
more regions that behave very nonlinearly. Sampling more densely in these “difficult”
regions has proven to be a successful approach for global surrogate modeling. The
LOLA algorithm first estimates the gradient at each point, which is the best local
linear approximation of the system response. This approximation is compared to the
true simulator responses for nearby points. To compute the gradient approximation
g in a point pr, a subset of Pr = P \ pr is defined, known as the neighborhood:
N(pr) = {pr1, . . . ,prv } ⊂ Pr. This set is used to solve the following least squares
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problem:

(3.1)

⎛
⎜⎜⎜⎜⎝
p
(1)
r1 − p

(1)
r p

(2)
r1 − p

(2)
r . . . p

(d)
r1 − p

(d)
r

p
(1)
r2 − p

(1)
r p

(2)
r2 − p

(2)
r . . . p

(d)
r2 − p

(d)
r

...
...

...

p
(1)
rv − p

(1)
r p

(2)
rv − p

(2)
r . . . p

(d)
rv − p

(d)
r

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝
g(1)

g(2)

...
g(d)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
f(pr1)− f(pr)
f(pr2)− f(pr)

...
f(prv)− f(pr)

⎞
⎟⎟⎟⎠ .

LOLA requires v ≥ 2d, so this system is never underdetermined. Using this gradient
information to predict the values of other points in the neighborhood, we can compute
the error between the linear approximation and the true simulator response at these
points:

(3.2) E(pr) =

v∑
i=1

|f(pri)− (f(pr) + g.(pri − pr))|.

The error E is referred to as the nonlinearity score. The region surrounding pr is
nonlinear if the error is large, as a linear prediction will be insufficient to capture the
system response locally. Theoretically, LOLA chooses new points in locations near
points with high nonlinearity scores. In practice however, LOLA is combined with a
Voronoi exploration based component (see section 5.1).

3.1. How to determine the neighborhood. A key issue in LOLA is how to
determine the neighborhood N(pr) of a point pr, which is referred to as the reference
point. Determining this set is essentially a multiobjective optimization problem which
optimizes two criteria:

1. Cohesion: A neighbor should be as close to the reference point as possible,
as we are constructing a local approximation.

2. Adhesion: The neighbors should be as far away from each other as possible,
in order to cover the space surrounding the reference point.

Clearly, it is impossible to maximize both. If the neighbors are very close to the refer-
ence point (high cohesion), they are close to each other as well (high adhesion). Points
further away can have better adhesion, but can result in a bad local approximation.
Unfortunately, there is no known general solution to place an arbitrary number of
points in an ideal configuration on a (hyper)sphere [5].

The original LOLA algorithm [7] solves this optimization problem by comparing
a neighborhood with an optimal configuration known as the cross-polytope. This
configuration always has 2d points (which explains the constraint of v ≥ 2d). This
configuration is intuitive: for one-dimensional problems this means one neighbor on
each side of the reference point, for two dimensions this is a square, etc. For each
pr, all possible sets of v points are constructed and compared to the cross-polytope.
The set which resembles the cross-polytope is chosen as N(pr). When new points are
available, each point in the neighborhood is removed and replaced by a new point. If
this results in a better configuration, then the neighborhood is updated. This solution
is very elegant and leads to quasi-optimal configurations in terms of cohesion and
adhesion. Because in a cross-polytope configuration the vectors pri − pr, i = 1 . . . v,
are orthogonal and the method generates neighborhoods resembling a cross-polytope,
this results in a well-conditioned system for (3.1).

However, the downside of this approach is its complexity: O
(
22dNNnew

)
(Nnew

represents the amount of new samples the algorithm proposes for evaluation). Two
optimizations to the algorithm were proposed, affecting mostly the N and Nnew com-
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A1024 VAN DER HERTEN, COUCKUYT, DESCHRIJVER, AND DHAENE

ponents. The “too far” heuristic excludes certain points from addition to the neigh-
borhood as they are mathematically unable to improve the neighborhood. This makes
the algorithm very powerful and usable for low-dimensional problems. Issues appear,
however, when using LOLA to build global surrogate models for problems of higher
dimensionality. As d becomes larger the neighborhood size increases, which causes
each new point to result in many new candidate neighborhoods that need to be eval-
uated. Additionally, due to the curse of dimensionality more points will be required
to obtain sufficient information to construct an accurate surrogate model. Problems
of four dimensions and higher will spend a very long time on determining where to
choose new samples when using the LOLA algorithm for exploitation.

3.2. Novel approach to determine the neighborhood. Surrogate model-
ing of high-dimensional systems can be computationally very demanding as a lot of
(expensive) data points are required to construct accurate models. The complexity
of many modeling types, such as Kriging and radial basis function (RBF) models,
scales badly with sample size and design space dimensionality. Having a sequential
sampling algorithm that adds to the computational burden is undesirable. In this
section a new approach to determining N(pr) is introduced. This approach requires
computing weights to include information about cohesion and adhesion. The weight
computation is covered in section 4.

The original neighborhood selection procedure [7] is selective: no matter how
many points surround the reference point, a fixed number of neighbors (v) is selected
which means that, in some cases, valuable information is neglected. The new algo-
rithm therefore includes all points within a certain range α of the reference point:

(3.3) N(pr) = {p | p ∈ Pr , ||p− pr|| < α } .
We assume that each parameter was scaled to compatible ranges, and an appropri-
ate distance metric is used. In section 5.2, a brief discussion on distances in high-
dimensional spaces is given. The regulatory α parameter in (3.3) controls the part
of the input space that is included in the gradient estimation. It defines the notion
“local” for pr. It can be proportional to the average distance between points, or it
can be time controlled. In this paper the following heuristic was used:

(3.4) α =
2

K

K∑
j=1

||nj − pr||

with nj the jth nearest neighbor of p in the input space. The heuristic represents
twice the average distance to the K nearest neighbors. The parameter K is chosen as
a function of dimensionality; for all experiments in this paper it was chosen to be 4d.

When a point is very isolated, α will be large to include sufficient points in the
gradient estimation to avoid an underdetermined system. In a dense region, a smaller
alpha will only include points that are sufficiently close to obtain an accurate gradient.
If points that are distant would be included, they could smooth out the gradient in the
case of small nonlinearities. Unfortunately, in the case of a very isolated point, (3.4)
still can result in |N(pr)| < d, which turns (3.1) into an underdetermined system. In
this situation, α is raised to ||nd − pr|| to include the d nearest neighbors.

Note how this definition of N(pr) no longer selects points based on adhesion and
cohesion as defined above, however, we still require including this information in our
gradient estimation. This issue is covered by assigning weights to each neighbor. In
the next section we come up with a strategy to assign the weights.
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FUZZY HYBRID SEQUENTIAL DESIGN A1025

As we are no longer chasing the cross-polytope, we risk instability when solving
(3.1). However, due to the nature of experimental design, points will still be spread
out over the design space as much as possible, leading to a surrounding configura-
tion. Because of this property most of the vectors pri − pr, i = 1 . . . v have different
directions, which results in a well-conditioned matrix.

4. Determining the neighbor weights. Attaching proper weights to each
neighbor of pr and solving (3.1) as a weighted least squares problem reintroduces the
concept of cohesion and adhesion. The weights reflect how much influence each point
in N(pr) has in the gradient estimation. Points with high cohesion and low adhesion
are preferred and are assigned high weights, while low cohesion and/or high adhesion
result in low weights.

First, we mathematically define cohesion and adhesion ∀p ∈ N(pr):

C(pr,p) = ||p− pr||,(4.1)

A(pr,p) = min
q∈Pr

||q − p||.(4.2)

High cohesion means points are very close, which corresponds to lower values for C,
compared to other points in N(pr). On the other hand, low adhesion corresponds
to large values for A. For simplicity, C(pr) and A(pr) are vectors which represent
cohesion and adhesion values for all neighbors of pr. In section 4.2 a system based on
fuzzy logic is defined to determine the neighbor weights. The concept of a Mamdani
fuzzy inference system (FIS) is first explained in the next section.

4.1. Mamdani FIS. An FIS maps inputs to outputs, using fuzzy set theory.
Common types include the Mamdani and the Sugeno FISs. In this section we briefly
explain the concept of the first type.

Fuzzy sets and concepts were introduced as a way to represent data imprecisely.
An example is the weight of a person: we can express the weight numerically using a
number with a unit, but we can also treat a person’s weight as a linguistic variable with
linguistic values. Someone can be skinny, normal, or heavy. Typical for these type
of statements is the lack of clear boundaries: when is someone no longer skinny but
normal? Usually there is a gray zone between the linguistic values. Mathematically
this is expressed by means of fuzzy sets. A crisp1 set A has a simple membership
function χA : A → { 0, 1 }: an element is either a member or not. For a fuzzy
set, the membership function is less strict and takes the form of μA : A → [0, 1].
Usually a membership value of zero indicates complete nonmembership, whereas one
represents complete membership. Values in-between indicate intermediate degrees of
membership.

Built on the theory of fuzzy sets, an FIS consists of a fuzzifier, an inference engine,
and a defuzzifier. The fuzzifier maps crisp inputs of linguistic variables to fuzzy set
memberships, using provided membership functions. These membership degrees are
fed into a rule-based inference engine, which processes rules of the form “if-then.”
To process the rules, we need to be able to process operations such as AND and OR
within the rules. In fuzzy logic, these operations are known as fuzzy combinations.
Many possible operations have been proposed; in this paper the minimum t-norm and
maximum t-conorm are used.

The output of these rules (of which some might not be activated, depending
on the input) is combined (usually by applying a fuzzy OR) and defuzzified. A

1A traditional set.
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popular method for defuzzification is the centroid method. For more information
about Mamdani FISs, the reader is referred to [21]. More information on fuzzy logic
and the t-(co)norms can be found in [13].

4.2. Fuzzy-based neighbor weight assignment. Although we defined crisp
values for cohesion and adhesion with (4.1) and (4.2), it is clear that handling these
two quantities as linguistic variables is much more convenient. In fact, reasoning with
crisp values for cohesion and adhesion makes the problem complex. In what follows,
an FIS S is proposed to assign weights to each point in N(pr). The system has two
input parameters, cohesion and adhesion, and produces a weight as output.

For the cohesion input parameter, one fuzzy set referred to as “high” with mem-
bership function Chigh is defined

Chigh : [0, α]→ [0, 1],

x �→ 1

1 + exp (−σcx)
.(4.3)

Points that have a small distance to the reference point pr have a high membership de-
gree (corresponding to high cohesion) of the fuzzy set, points that are far away do not.

For adhesion, two fuzzy sets with membership functions Alow and Ahigh exist:

Alow : [0, Amax]→ [0, 1],

x �→ exp

(−(x−Amax)
2

2(Amaxσal)2

)
;

Ahigh : [0, Amax]→ [0, 1],

x �→ exp

( −x2

2(Amaxσah)2

)
.

Amax is the maximum adhesion value for A(pr). σc, σal, and σah are the hyperpa-
rameters of the membership functions. Larger values for the σ values result in wider
Gaussian membership functions, which means higher membership values to the sets.
It is possible to define a single adhesion membership function and define the other as
the negation (as for the cohesion), but two membership functions allow more control
for the adhesion parameter. For the output, 3 triangular membership functions are
defined (low, average, and high) as shown in Figure 1(a). The following rules complete
the FIS definition:

1. IF cohesion is high AND adhesion is low THEN weight is high.
2. IF cohesion is high AND adhesion is high THEN weight is average.
3. IF cohesion is NOT high AND adhesion is low THEN weight is average.
4. IF cohesion is NOT high AND adhesion is high THEN weight is low.

The system processes the cohesion and adhesion for each p ∈ N(pr) and computes
the membership degree for the fuzzy sets Chigh, Alow, and Ahigh (this step is referred to
as fuzzification). Next, all rules are evaluated to assign a degree of membership to the
triangular output member functions. The output degree of membership corresponds
to the result of the evaluation of the rule expressions. For example, after fuzzification
a point has a membership degree of 0.5 in Chigh, 0.15 in Alow, and 0.45 in Ahigh.
According to the first rule, this point has a degree of membership of 0.15 in the fuzzy
set high.2 The output membership function is then clipped by the obtained degree of

2This is due to the choice of minimum as t-norm and maximum as t-conorm. For more information
on norms and fuzzy logic, the reader is referred to [13].
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Fig. 1. Figure (a) shows the output membership functions low, average, and high for S. In (b),
the clipped functions for the example with input membership degrees of 0.5 in Chigh, 0.15 in Alow,
and 0.45 in Ahigh are shown. The vertical line indicates the weight obtained by defuzzification of the
resulting output membership distribution by the centroid method.
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Fig. 2. Example of the response surface of the FIS S for α = 1, Amax = 1, σc = 0.3,
σal = 0.27, and σah = 0.3. The cohesion and adhesion on the axes correspond to (4.1) and (4.2),
not the response of the membership functions.

membership (y-axis in Figure 1). By applying a fuzzy OR over the obtained output
membership values, the final output membership distribution is obtained (Figure 1(b)
shows the effect for the example). The centroid defuzzification method is then used
to convert the result into a crisp value for the weight (x-axis in Figure 1).

Figure 2 shows the response surface of S. Highly cohesive points with low adhe-
sion are preferred, as opposed to low cohesive points with high adhesion. It is possible
to use different membership functions (for example, sigmoid instead of Gaussian mem-
bership functions), or to define more fuzzy sets both for inputs as well as the output.
Throughout the rest of this paper, we use the FIS defined above.

An illustration of how weights are assigned by S is shown in Figure 3. The
ideal configuration of the points in two dimensions (the cross-polytope) is illustrated
in Figure 3(a). Each point is assigned an equal weight, which is not surprising as
all cohesion and adhesion values are identical. Figure 3(b) shows a more complex
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Fig. 3. Illustration of weight assigments with S using the same constants as Figure 2. The cross
indicates the reference point pr, the size of each neighbor the weight. (a) shows the ideal (cross-
polytope) configuration: all weights are equal. In (b), the left side has three points: the weights have
been distributed amongst them.

situation. Instead of one sample at (−1, 0) we now have three points: two close to
each other, and a third one somewhat further away. In this case, the weight is divided
amongst the two neighboring points. If the weight of these points would be added,
they would roughly add up to the weights of the previous case, which means that
more points are contributing to the gradient estimation. The third point on the left
at (−0.7, 0.6) is further away and provides information about a different direction.
Therefore it is assigned a higher weight, although it doesn’t have the same impact
as the other stand-alone points. In fact, it has taken over some weight from the two
points at (−1, 0) and the point at (0, 1).

5. New hybrid sequential design method. In section 3 a previously intro-
duced exploitation method was discussed. A key complexity issue for high-dimensional
problems was identified and a new approach to construct the neighborhoods was intro-
duced. Section 4 introduced a fuzzy-based mechanism to assign weights to each neigh-
bor, based on cohesion and adhesion. All these concepts are now brought together
into a new approach that can take the place of the LOLA algorithm in LOLA-Voronoi.

5.1. Fuzzy LOLA. The weights computed by S can be used to solve (3.1) as a
weighted least squares3 problem to estimate the gradient. After obtaining g, we can
compute the nonlinearity score. An overview of this new approach, known as fuzzy
local linear approximation (FLOLA), is given in Algorithm 1. Because the size of the
system (3.1) is not dependent on the size of the set P, only the for-loop contributes
to the complexity of the algorithm: this results in a complexity of O

(
N
)
which is a

massive improvement compared to LOLA. Furthermore, the for-loop allows parallel
computation since each iteration is independent. The biggest costs are many distance
calculations to determine α, A(pr), and C(pr). This is solved by computing a distance
matrix once prior to the for-loop: this matrix contains all required information for
computations inside the loop. Distances matrices tend to occupy a lot of memory in
the case of many points, which is unlikely for this algorithm in the context of surrogate
modeling as each evaluation is expensive. Due to the limited size of the set P , the
size of the matrix is always manageable.

3Note that the weights are computed for each point p separately. This essentially means we
turned the gradient estimation into a moving least squares problem.
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Algorithm 1. FLOLA: This exploitation algorithm computes a score ∀p ∈
P , indicating the nonlinearity of the region surrounding p. New samples

are chosen in the neighborhood of the Nnew highest ranked samples.

Require: P , F , σc, σal, σah, Nnew

initiate S (section 4.2)
Calculate distance matrix for P
for all pr ∈ P do
Compute α (3.4)
Initialize N(pr) (3.3)
Determine C(pr) and A(pr) (4.1), (4.2)
Compute weights W by evaluating S
Estimate g (3.1), with respect to W
Calculate error on gradient estimation (3.2)

end for
Pick Nnew samples with highest nonlinearity score
Pnew = new samples in the neighborhood of these samples
P = P ∪ Pnew

5.2. Including an exploration metric. Similarly to LOLA, the exploitation
based algorithm FLOLA can be complemented with a Voronoi approximation based
exploration component and form FLOLA-Voronoi. For each point pr, the non-
linearity score Efuzzy is complemented with a measure V indicating an approximation
of the relative Voronoi cell size of the reference point. For more information on ap-
proximating the size of a Voronoi cell, the reader is referred to [7]. The value of V is
in the range [0, 1] so Efuzzy is first normalized and then added to V :

(5.1) Hfuzzy(pr) = V (pr) +
Efuzzy(pr)∑N
i=1 Efuzzy(pi)

.

For clarity, the pseudocode of FLOLA-Voronoi is shown in Algorithm 2. The
only difference with LOLA-Voronoi is the algorithm used to calculate Efuzzy(pr).
The hybrid score H is then used to rank all currently available points according to
the nonlinearity and the sample density of the surrounding region. The Nnew highest
ranked reference points are selected to assign new points in the next iteration. The
position of the point is determined by considering local space fillingness. Usually the
position maximizing the minimum distance from both the reference point as well as
its neighbors is chosen.

The combination of both criteria guarantees we do not get stuck in one region of
the design space and no large areas are left unexplored. However, the exploitation
score pushes the strategy to sample nonlinear regions much denser when they are
discovered. When these regions are sampled dense enough, the FLOLA score will
be lower, and exploration will take over. This additional information on nonlinear
regions helps the surrogate model to capture the nonlinear behavior accurately as more
information is provided on irregularities. In (5.1), the exploration and exploitation
components contribute equally. It is possible to use a different balance, or even change
the balance dynamically as more samples become available. For more information,
please refer to [26].

Setting Nnew = 1 is optimal, as each sampling decision can be made with the latest
information at hand. This means that when a new nonlinear region is discovered it
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Algorithm 2 . FLOLA-Voronoi: Hybrid sequential strategy. Combines

an exploitation and an exploration score (FLOLA and Voronoi respec-

tively) and selects a new candidate sample in the neighborhood of the

Nnew highest ranked samples.

Require: P , F , σc, σal, σah, Nnew

for all pr ∈ P do
Calculate Efuzzy(pr) (3.2)
Calculate V (pr) (see [7])
Compute Hfuzzy(pr) (5.1)

end for
Sort P by Hfuzzy

for i = 1 to Nnew do
pnew ← location near pi

Pnew ← Pnew ∪ pnew

end for

is exploited immediately. However, choosing to add more samples each iteration does
not lead to undesired clusters or a bad design, since only one additional point can be
placed in each Voronoi cell during one iteration. For high-dimensional problems this
is recommended as fitting a surrogate model may be expensive.

5.3. Note on distances in high-dimensional spaces. Throughout the entire
paper, distance between vectors a, b ∈ Rd was indicated as ||a− b||, without specify-
ing the distance metric. The most commonly used distance metric is the Euclidean
distance which is essentially a Minkowski distance (5.2) for p = 2:

(5.2) ||a− b||p =

(
d∑

i=1

(|ai − bi|)p
)1/p

.

However, in high-dimensional spaces the Euclidean distance fails to provide a mean-
ingful notion to the concept of proximity. This is known as the concentration of
norms, and affects all Minkowski distances for p ≥ 1 [12]. As a solution, fractional
distances can be used. In fact this is a Minkovski distance with p ∈ [0, 1]. This does
not solve the concentration effect but reduces the impact. During our experiments
fractional distances are used for the high-dimensional problems with p = 1

d , to test if
they result in better designs. For problems of very high dimensionality, p = 1

�log(d)�+1

can be used to avoid very difficult dth root computations (which is extremely slow).

6. Experimental setup. In previous studies [1, 10, 28, 23, 2, 11, 27] in several
research fields, LOLA-Voronoi has proven to be an excellent algorithm for building
sequential designs. The sampling distribution is modified to focus on nonlinear regions
at the expense of a small computational cost for low-dimensional problems. For high-
dimensional problems this cost quickly magnifies, which can be countered by using
FLOLA-Voronoi. Throughout all experiments, the hyperparameters σc, σal, and σah

of the membership functions of FLOLA are fixed at 0.3, 0.27, and 0.3, respectively.
In this section, we will first show by means of simple two-dimensional problems

that the new algorithm performs very similarly to LOLA-Voronoi and has the same
desirable properties. Next, higher-dimensional problems are modeled to illustrate the
performance gain of the new algorithm. Next for FLOLA-Voronoi and LOLA-Voronoi,
four more sequential design strategies are tested: the first is a solely Voronoi-based
sequential design which is a pure exploration based method. More recently, a new
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algorithm known as the Delaunay-hybrid adaptive sequential design (DHASD) was
proposed [3]. This method combines an exploitation and exploration metric based on
a Delaunay triangulation, and dynamically balances between the two. The balancing
strategy relies on several predefined parameters to avoid clustering. These parameters
heavily influence the performance of the sampling strategy but need to be chosen by
an expert in the function of the design space and the complexity of the problem at
hand. This is a disadvantage for practical applications where nothing is known in
advance. For our test cases, the parameters were chosen by trial and error.

An exploitation based model error strategy was included as well: this strategy
evaluates the best models of previous generations on a dense grid. The outputs are
compared and new samples are chosen in regions with the largest differences. Since
evaluating surrogate models is cheap, evaluating a dense grid is not computationally
demanding. Furthermore, this method requires the construction of the intermediate
surrogate models, which can have a considerable cost. All other methods do not
require this, i.e., FLOLA-Voronoi only needs the simulator responses. To conclude,
random sampling has also been included in the experiments.

All problems start with a small initial design. Sequentially, samples are added
while intermediate models are constructed to evaluate the accuracy that can be ob-
tained with the current set of samples. This iterative process continues until a target
accuracy of 0.05 is reached for the root relative square error (RRSE) on a dense
preevaluated validation set:

RRSE(x, x̃) =

√√√√∑N
i=1 (xi − x̃i)

2∑N
i=1 (xi − x̄)2

.

xi represents the true simulator responses in all samples, x̃i the estimate by the
surrogate model, and x̄ the mean. The model type for each problem was chosen based
on prior knowledge about the test cases. Often this information is not available; in
these cases automatic model type selection approaches can be used as described in [4].

6.1. SUMO research platform. To perform the experiments, the surrogate
modeling (SUMO) MATLAB toolbox4 was used. Designed as a research platform for
sequential sampling and adaptive surrogate modeling featuring high extensibility, this
MATLAB toolbox makes it very easy to implement and compare this new sampling
approach to other sequential design methods using several model types.

The workflow of the SUMO toolbox is illustrated in Figure 4. Starting point is an
initial design, which is generally a sparse space-filling design such as Latin hypercubes
or a fractional design. After evaluation of these points, the main modeling loop is
initiated. A set of surrogate models is built and scored using a set of measures (i.e.,
cross validation, validation set, . . . ). Usually models have a set of hyperparameters
that can be tuned using optimization algorithms. Examples of hyperparameters are
the order of numerator and denominator for rational models, the network architecture
for neural networks, etc. During the hyperparameter optimization step, new models
are constructed until no further improvement can be made. If the target accuracy
(in terms of the measures) has not been reached yet, the sequential design routine is
called to select more points to be evaluated. When the system responses to these new

4The SUMO Toolbox R2014a, including an implementation of FLOLA-Voronoi, can be down-
loaded from http://www.sumo.intec.ugent.be, allowing full reproduction of all experiments in this
article.
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Select initial
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Evaluate samplesCreate model(s)

Estimate model
accuracy

Tune model
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Select new
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Done

No

No

Yes

yes

Fig. 4. Flowchart of the SUMO toolbox workflow.

points are available, the toolbox starts a new modeling loop. For more information
on the architecture and the different components of the SUMO toolbox, please refer
to [16].

6.2. Low-dimensional test cases. The goal of the low-dimensional experi-
ments is to illustrate the equivalence of LOLA and FLOLA. As our goal is to evaluate
the performance of sequential design strategies, a minimal initial design consisting
of a Latin hypercube of 10 points combined with a 2-level factorial design was used.
Each iteration, a single point is added to this set. For all test cases, each experi-
ment was repeated ten times to reduce noise by random factors in the SUMO toolbox
(for example randomization in the hyperparameter optimization process). A visual
representation of each test case is given in Figure 5.

6.2.1. Case 1: Peaks. The first test case is a two-dimensional problem known
as Peaks. The surface is flat, with a few Gaussian distributions in the center of the
domain. This function is very useful to illustrate the concept of (F)LOLA-Voronoi: as
a large part of the input domain is flat, an increased focus on the nonlinear region will
result in fewer samples required to reach the target accuracy. Kriging with a Gaussian
correlation function was used as the surrogate model type: due to the nature of this
model type it is very suitable for modeling the Gaussian distributions.

Three cases on different domains are considered: [−3, 3]2, [−5, 5]2, and [−8, 8]2.
The first case is zoomed in on the nonlinear region. As the input range grows,
the quasi-flat surface surrounding the nonlinear central region grows, and (F)LOLA-
Voronoi is expected to be more efficient.

6.2.2. Case 2: Ackley function. Ackley’s path, a function well known from
optimization is used as a second test case. For a d-dimensional problem, it is defined
as

F (x) = −20 exp
⎛
⎝−0.2

√√√√1

d

d∑
i=1

x2
i

⎞
⎠− exp

(
1

d

d∑
i=1

cos(2πxi)

)
+ 20 + e

with xi ∈ [−2, 2]. The function is modeled in two dimensions with RBFs.

D
ow

nl
oa

de
d 

07
/2

9/
15

 to
 1

57
.1

93
.1

35
.1

72
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FUZZY HYBRID SEQUENTIAL DESIGN A1033

−5

0

5

−5

0

5

−5

0

5

(a) Peaks (box indicates [−3, 3])

−1

0

1

−1

0

1
0

2

4

6

8

(b) Ackley (Zoom)

−1

0

1

−1

0

1
0

5

10

15

20

WnLsn

(c) LNA

Fig. 5. Illustrations of the low-dimensional test cases.

6.2.3. Case 3: Low-noise amplifier (LNA). This test case consists of a real-
world problem from electronics. An LNA, which is a simple RF circuit, is the typical
first stage of a receiver, providing the gain to suppress noise of subsequent stages. The
performance of an LNA can be determined by means of computer simulations where
the underlying physical behavior is taken into account. For this experiment we chose

to model the input-noise current

√
i2in, as a function of two (normalized) parameters:

the inductance Lsn and the MOSFET width Wn. The relation to the real parameters
is defined as

W = 100 · 10−6 · 10Wn m,

Ls = 0.1 · 10−9 · 10Lsn H.

The input domain of this test case is smooth with a steep ridge for Wn = 0. A full
description of the LNA problem can be found in [17]. The chosen model type for this
problem is artificial neural networks, trained with Levenberg–Marquard backpropa-
gation with Bayesian regularization (300 epochs). The network topology and initial
weights are optimized by a genetic algorithm.

6.2.4. Results. Results of the low-dimensional test cases are shown in Table 1.
For the Peaks test cases, the results confirm the expectation: FLOLA- and LOLA-
Voronoi clearly perform better compared to the other methods in all three cases. As
the quasi-flat region surrounding the nonlinear central region grows, the advantage
over the other methods increases. This observation is confirmed by the LNA test
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Table 1

Summary of the results for the two-dimensional test cases. Each problem was modeled with
different sampling strategies until an RRSE of 0.05 over a preevaluated validation set was reached.
Each experiment ran ten times to cancel out noise by random factors. The 95% confidence intervals
are shown between brackets.

Peaks [−3, 3] Peaks [−5, 5] Peaks [−8, 8] Ackley LNA
FLOLA-Voronoi 71 (67, 73) 99 (93, 105) 145 (140, 149) 259 (244, 273) 63 (58, 68)
LOLA-Voronoi 65 (61, 68) 97 (87, 105) 147 (142, 153) 262 (244, 278) 62 (56, 69)
DHASD 79 (75, 83) 115 (106, 123) 192 (179, 205) 352 (326, 379) 88 (79, 97)
Voronoi 96 (93, 98) 229 (219, 238) 643 (589, 698) 243 (233, 251) 103 (95, 112)
Model Error 104 (98, 110) 281 (253, 308) 851 (768, 934) 262 (250, 273) 118 (105, 132)
Random 105 (94, 116) 270 (240, 300) 1042 (842, 1242) 430 (400, 458) 165 (136, 194)

case: the steep ridge is sampled much more densely by both methods, which leads to
a satisfying model with 40% fewer samples than required for the next best method.

Only the Ackley test case behaves somewhat differently: FLOLA- and LOLA-
Voronoi and model error result in very comparable results, but the pure exploration
method (Voronoi) performs slightly better for this test case. This is not unexpected:
the Ackley function is nonlinear over the entire interval. There is no benefit of balanc-
ing between exploration and exploitation as the sample density should be more or less
the same. The exploitation scores do not provide an advantage and sometimes influ-
ence the strategy to pick a sample which is not in the largest Voronoi cell. The negative
impact of the exploitation score for this test case is quite limited, and can be further
reduced by improving the selection of the new candidate in the highest ranked cell.

DHASD is a recent approach, and was presented as an alternative for LOLA-
Voronoi with the ability to generate better designs. In our study the method performs
quite average. Possibly, better results can be obtained by adjusting the parameters
of the method to result in better balancing between exploration and exploitation:
since there is no automatic way to do this it is a serious disadvantage of the method,
especially when nothing is known about the system in advance. Another possible cause
for the performance of DHASD could be related to the combination with different
surrogate model types: the method has only been tested in combination with Kriging
[3]. However, the Peaks problem was modeled with Kriging and DHASD requires
more samples.

Although the FLOLA algorithm is less complex and lifts the strict constraints on
neighborhoods of the LOLA algorithm, the low-dimensional experiments indicate the
capability of the new algorithm to produce comparable results in terms of the number
of samples required to reach a predefined target accuracy.

6.3. High-dimensional test cases. To illustrate the speed of the new algo-
rithm, two high-dimensional test cases are considered. Global surrogate modeling of
high-dimensional problems is not easy, due to the curse of dimensionality. Adding
samples one by one and reconstructing the models would be a very lengthy process.
To avoid this, samples are added in batches. After each modeling iteration, the sample
selection strategy is run once, and a batch of new candidates is selected for evalu-
ation (Nnew > 1). Many model types are not able to reach a very strict accuracy
for high-dimensional problems: at some point their accuracy will not improve much,
and the exact location of the samples does not have a big impact. Futhermore, due
to the maximum walltime for jobs on the UGent HPC infrastructure, each run was
given a time limit of 72 hours which may be too short for some strategies to obtain
the target accuracy (RRSE of 0.05). To obtain a better comparison between the
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sequential design strategies, the number of samples required for an RRSE of 0.1 is
included as well. To evaluate the performance, the running times of the the LOLA,
FLOLA, and Voronoi components are recorded separately each time the respective
algorithm is run. The DHASD method was excluded from the high-dimensional test
cases. Delaunay triangulation of high-dimensional datasets with many points is an
infeasible lengthy process. Additionally, figuring out the parameters of DHASD by
trial and error is difficult. Because the input spaces are high dimensional, the experi-
ments with FLOLA-Voronoi were performed with both Euclidean (l2) and fractional
(l1/d) distances to study the impact of the distance metrics. The LOLA-Voronoi al-
gorithm was not modified to use fractional distances, as many optimizations of the
LOLA algorithm rely on the use of Euclidean distance. As for the low-dimensional
test cases, each experiment was repeated ten times to reduce noise by random factors
in the SUMO toolbox.

6.3.1. Case 1: Hartmann six dimensions (6D). As a first test case, a six-
dimensional Hartmann function was chosen. The function is not very complex so
it can be modeled in reasonable time, but it does feature some areas that are more
difficult to model. As initial design, 400 points were generated using a Monte Carlo
approach as described in [6]. The sample selection batch size was set to 50 samples.
As model type, least-squares (support vector machines) SVMs [29] were chosen as
they have a fixed number of 2 parameters: one kernel parameter and the amount of
noise. These parameters were optimized with the DIRECT algorithm [19].

6.3.2. Case 2: Styblinski–Tang eight dimensions (8D). The Styblinski–
Tang function is a test function from optimization. In d dimensions, it is defined
as

f(x) =

∑d
i=1 x

4
i − 16x2

i + 5xi

2

for −5 ≤ xi ≤ 5. The central region is quite flat, but towards the bounds of the
interval the function is suddenly steep. It is expected usage of (F)LOLA-Voronoi
will be advantageous as the bounds will be sampled more densely. A 2-level factorial
design complemented with a Latin hypercube of 244 points generated by the TPLHD
algorithm [30] was used as initial design. Each iteration 50 samples are added by
the sequential design strategy. The chosen model type was again least-squares SVMs
optimized with the DIRECT algorithm.

6.3.3. Results. The number of samples required to reach the target accuracy is
shown in Table 2. For the Hartmann test case, FLOLA- and LOLA-Voronoi clearly
outperform the other methods. This confirms that the results of the low-dimensional
experiments hold for higher-dimensional problems. Surprisingly, model error sam-
pling performs worse than random sampling for this test case. Figure 6(a) indicates
the average runtime for each of the LOLA, FLOLA, and Voronoi components over
the 10 runs for both distance metrics, as a function of the evaluated samples available
before the sampling iteration. For Euclidean distance, the new algorithm is a lot
faster compared to LOLA. When selecting new samples with 3000 evaluated samples,
computing the scores with LOLA takes 15 minutes, compared to only a few seconds
with FLOLA. This is also reflected in the total runtime of the experiment: on av-
erage, a run with FLOLA-Voronoi takes 3 hours to complete, compared to 13 hours
with LOLA-Voronoi! When using fractional distances, computing distance matrices
becomes a lot more expensive because of the nth root. The impact on FLOLA is
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Table 2

Summary of the required sample size to reach two different target accuracies for high-
dimensional test cases. Each experiment ran ten times to cancel out noise by random factors.
The 95% confidence intervals are shown between brackets. In (b), some runs did not finish due to
a time constraint of 72 hours. In those cases, the number of selected samples is shown as is the
average accuracy at that point.

(a) RRSE of 0.1 on validation set

Hartmann 6D Styblinski-Tang 8D
FLOLA-Voronoi (l2) 1530 (1479, 1582) 3340 (3307, 3374)
FLOLA-Voronoi (l1/d) 1881 (1827, 1935) 3359 (3285, 3433)
LOLA-Voronoi 1520 (1469, 1572) 4255 (4084, 4426)
Voronoi (l2) 2265 (2217, 2313) 3525 (3476, 3573)
Model error 2241 (2106, 2376) 7255 (6917, 7593)
Random 2266 (2185, 2347) 4155 (4046, 4264)

(b) RRSE of 0.05 on validation set

Hartmann 6D Styblinski-Tang 8D
FLOLA-Voronoi (l2) 3200 (3134, 3268) 6899 (6744, 7054)
FLOLA-Voronoi (l1/d) 3676 (3591, 3761) > 5500(RRSE ≈ 0.08)
LOLA-Voronoi 3296 (3234, 3358) > 6900(RRSE ≈ 0.07)
Voronoi (l2) 4606 (4506, 4706) 7750 (7632, 7868)
Model error 5311 (4318, 6304) > 10000(RRSE ≈ 0.07)
Random 4951 (4818, 5084) > 10000(RRSE ≈ 0.06)

limited, but the performance of the Voronoi approximation is heavily affected when
using fractional distances and becomes very slow.

For the eight-dimensional Styblinski–Tang function not a single run with LOLA-
Voronoi, model error, or random sampling managed to reach the strict target accuracy
(RRSE = 0.05) within the time constraint. Runs with LOLA-Voronoi were ended after
72 hours with approximately 6900 samples selected; a large part of the time was spent
on sample selection. The average accuracy of runs with LOLA-Voronoi at this point
was 0.07. Model error managed to select up to 10000 points. Unfortunately, this was
not sufficient to reach the target accuracy. FLOLA-Voronoi with fractional distances
also failed to reach the target accuracy, mainly due to the poor performance of the
Voronoi component with fractional distances. Only (Euclidean) Voronoi sampling and
FLOLA-Voronoi managed to reach the target accuracy in time, the latter using 10
percent fewer samples.

FLOLA-Voronoi with Euclidean distance is the most efficient method to reach
the target accuracy for both problems. It is a lot faster compared to LOLA-Voronoi,
and requires fewer samples compared to all other methods. The usage of fractional
distance slows the algorithm down and does not seem to provide a benefit. However,
the fractional distance does seem to have a slight impact when modeling the eight-
dimensional test case. Figure 7 shows the evolution of the RRSE as more samples are
added each iteration. Clearly, FLOLA-Voronoi with fractional distance brings down
the error faster, which means initially the space is covered better. However, when
1800 samples have been selected, the version based on Euclidean distance has caught
up and both methods have similar errors. At this point, the input space has been
saturated up to a level which prevents fractional distance from being better at cov-
ering the input space. This effect is likely to be more present for problems of higher
dimensionality; in this case the usage of FLOLA-Voronoi with fractional distance may
be appropriate to obtain a qualitative model faster when samples are very expensive
and the additional runtime of the algorithm is not an issue. Furthermore, the compu-
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Fig. 6. Runtime of LOLA, FLOLA, and Voronoi for the high-dimensional test cases. For the
Styblinski–Tang function, the experiments of FLOLA-Voronoi with fractional distance were inter-
rupted because the time limit was reached.
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Fig. 7. Comparison of FLOLA-Voronoi with Euclidean and fractional distance at the beginning
of the modeling process of the Styblinski–Tang 8D function, for all ten runs (whiskers indicate the
standard deviation). Clearly, the fractional distance is able to bring down the error of the model
faster, but the version with Euclidean distance catches up at around 1800 samples.
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tation of the fractional distance matrix can benefit greatly from GPU computation.
An implementation in CUDA [22] runs approximately 5x faster than the optimized
CPU implementations used for these experiments.

7. Conclusion. The LOLA-Voronoi method has proven in the past to outper-
form other sequential design methods for several model types and problems. It does
not require intermediate models to make sampling decisions and has been applied to
multiple real-world test cases from different problem domains by users of the SUMO
toolbox in several studies [1, 10, 28, 23, 2, 11, 27]. The performance of this method
comes at the cost of computational complexity, which grows rapidly as the dimen-
sionality of the problem increases.

This paper presents a novel approach which replaces the computationally complex
LOLA algorithm with a fuzzy variant, FLOLA. Experiments show similar results
indicating the new approach has the benefits of the original algorithm, but as it has
a complexity of O

(
N
)
the overall time to build a global surrogate model of a high-

dimensional problem reduces dramatically. Recent developments such as adaptive
balancing of both components [26] are also applicable to this new algorithm.

Currently, new candidate points (samples) are chosen in the design space near the
highest ranked samples, based on the maximin distance to existing samples. Better
options to improve this local space fillingness will be investigated in further work. The
reduced complexity allows the construction of global surrogate models of problems
with higher dimensionality. In this study, the use of the fractional distances did not
offer a lot of advantages. Only in an eight-dimensional problem was a slight advantage
in the beginning of the modeling process noticed. A more thorough study of the
impact of high-dimensional spaces on aspects of the surrogate modeling process based
on Euclidean distance (model types and measures) is the subject of further research.
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[14] K. Goethals, I. Couckuyt, T. Dhaene, and A. Janssens, Sensitivity of night cooling per-

formance to room/system design: Surrogate models based on CFD, Building Environ., 58
(2012), pp. 23–36.

[15] D. Gorissen, I. Couckuyt, E. Laermans, and T. Dhaene, Multiobjective global surrogate
modeling, dealing with the 5-percent problem, Eng. Comp., 26 (2010), pp. 81–89.

[16] D. Gorissen, K. Crombecq, I. Couckuyt, P. Demeester, and T. Dhaene, A surrogate
modeling and adaptive sampling toolbox for computer based design, J. Mach. Learn. Res.,
11 (2010), pp. 2051–2055.

[17] D. Gorissen, L. De Tommasi, K. Crombecq, and T. Dhaene, Sequential modeling of a low
noise amplifier with neural networks and active learning, Neural Comput. Appl., 18 (2009),
pp. 485–494.

[18] D. Gorissen, W. Hendrickx, K. Crombecq, and T. Dhaene, Adaptive distributed meta-
modeling, in Proceedings of 7th International Meeting on High Performance Computing
for Computational Science (VECPAR 2006), Lecture Notes in Comput. Sci. 4395, M. Dayde
et al., eds., Springer, Berlin, 2007, pp. 579–588.

[19] D.R. Jones, C.D. Perttunen, and B.E. Stuckman, Lipschitzian optimization without the
Lipschitz constant, J. Optim. Theory Appl., 79 (1993), pp. 157–181.

[20] Y. Lin, An Efficient Robust Concept Exploration Method and Sequential Exploratory Experi-
mental Design, Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA, 2004.

[21] E.H. Mamdani and S. Assilian, An experiment in linguistic synthesis with a fuzzy logic con-
troller, Internat. J. Man Mach. Stud., 7 (1975), pp. 1–13.

[22] CUDA Nvidia, Programming Guide, http://scholar.google.be/scholar?hl=en&q=nvidia+cuda
(2008).

[23] B. Rosenbaum and V. Schulz, Comparing sampling strategies for aerodynamic Kriging sur-
rogate models, ZAMM Angew. Math. Mech., 92 (2012), pp. 852–868.

[24] T. Simpson, D. Lin, and W. Chen, Sampling strategies for computer experiments: Design
and analysis, Internat. J. Reliabil. Appl., 2 (2002), pp. 209–240.

[25] T. Simpson, J.D. Poplinski, P.N. Koch, and J.K. Allen, Metamodels for computer-based en-
gineering design: Survey and recommendations, Eng. Comput. (Lond.), 17 (2001), pp. 129–
150.

[26] P. Singh, D. Deschrijver, and T. Dhaene, Balanced sequential design strategy for global
surrogate modeling, in Proceedings of the 45th Conference on Winter Simulation, Austin,
TX, IEEE, Piscataway, NJ, 2013, pp. 2172–2179.

[27] P. Singh, D. Deschrijver, D. Pissoort, and T. Dhaene, Adaptive classification algorithm for
EMC-compliance testing of electronic devices, Electron. Lett., 49 (2013), pp. 1526–1528.

[28] D.W. Stephens, D. Gorissen, K. Crombecq, and T. Dhaene, Surrogate based sensitivity
analysis of process equipment, Appl. Math. Model., 35 (2011), pp. 1676–1687.

[29] J.A.K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, J. Vandewalle, J.A.K.

Suykens, and T. Van Gestel, Least Squares Support Vector Machines, Vol. 4, World
Scientific, River Edge, NJ, 2002.

[30] F.A.C. Viana, G. Venter, and V. Balabanov, An algorithm for fast optimal Latin hypercube
design of experiments, Internat. J. Numer. Methods Engrg., 82 (2010), pp. 135–156.

D
ow

nl
oa

de
d 

07
/2

9/
15

 to
 1

57
.1

93
.1

35
.1

72
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://scholar.google.be/scholar?hl=en&q=nvidia+cuda


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <>
    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


