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Abstract Cyclone separators are widely used in a variety of industrial applications.
A low-mass loading gas cyclone is characterized by two performance parameters,
namely the Euler and Stokes numbers. These parameters are highly sensitive to the
geometrical design parameters defining the cyclone. Optimizing the cyclone geometry
therefore is a complex problem. Testing a large number of cyclone geometries is
impractical due to time constraints. Experimental data and even computational fluid
dynamics simulations are time-consuming to perform, with a single simulation or
experiment taking several weeks. Simpler analytical models are therefore often used
to expedite the design process. However, this comes at the cost of model accuracy.
Existing techniques used for cyclone shape optimization in literature do not take
multiple fidelities into account. This work combines cheap-to-evaluate well-known
mathematical models of cyclones, available data from computational fluid dynamics
simulations and experimental data to build a triple-fidelity recursive co-Krigingmodel.
This model can be used as a surrogate with a multi-objective optimization algorithm
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to identify a Pareto set of a finite number of solutions. The proposed scheme is applied
to optimize the cyclone geometry, parametrized by seven design variables.

Keywords Cyclone separator · Surrogate-based optimization (SBO) · Multi-fidelity
data · Sparse Kriging · Recursive co-Kriging

Mathematics Subject Classification 68T37 · 68T05 · 68U20 · 97M10 · 93A30 ·
49Q10 · 80M50 · 76Txx · 76Dxx · 68Uxx · 90-08

Nomenclature

a Cyclone inlet height (m)
b Cyclone inlet width (m)
Bc Cyclone cone-tip diameter (m)
d Number of design variables (-)
D Cyclone body diameter (m)
Dx Cyclone vortex finder diameter (m)
h Cylindrical part height (m)
Ht Cyclone total height (m)
K Kriging model
KA Kriging model with training data from analytical models
KCFD Kriging model with training data from CFD simulations
KExp Kriging model with training data from Experiments
n Number of sample points (-)
Ns Number of sample points in each dimension of gridded data
P Pareto set
s Standard deviation of model prediction
S Vortex finder length (m)
Vin Area-average inlet velocity (m/s)
x Data instance
X Training set of data
XA Training set of data from analytical models
XCFD Training set of data from CFD simulations
XExp Training set of data from experiments
ŷ Mean of model prediction
y Vector of training set targets
yA Vector of training set targets for data from analytical models
yCFD Vector of training set targets for data from CFD simulations
yExp Vector of training set targets for data from experiments
Y Random variable

Greek letters

α Regression function coefficient
γ Scaling parameter for sub-Kriging models
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ΔP Pressure drop (N/m2)
ε Distance threshold
μ Dynamic viscosity (kg/(m s))
φ(·) Transformation function
Φ· Normal cumulative distribution function
ψ(i) Correlations between Y (x) at the point to be predicted and at the sample data

points
Ψ Correlation matrix of given data samples
ρ Gas density (kg/m3)
σ 2 Variance
θ Kriging hyper-parameter variables

Dimensionless numbers

Eu Euler number
Re Reynolds number
Stk50 Stokes number corresponding to 50% separation efficiency

Abbreviations

BEEQ Bayesian estimation error quotient
CFD Computational fluid dynamics
EGO Efficient global optimization
EMO Efficient multi-objective optimization
MLE Maximum likelihood estimation
MOEA Multi-objective evolutionary algorithm
MSE Mean squared error
NSGA-II Non-dominated sorting genetic algorithm 2
RBF Radial basis function
SBO Surrogate-based optimization
SMS-EMOA S-Metric selection-evolutionary multi-objective optimization algo-

rithm
SVR Support vector regression

1 Introduction

Performing physical experiments to test a cyclone geometry is not practical as it
is very time-consuming and expensive. Computational fluid dynamics (CFD) sim-
ulations offer a faster alternative, but they are still computationally too expensive
for integration with optimization algorithms as each simulation takes several weeks.
Mathematical models are very cheap to evaluate but less accurate in comparison with
CFD simulations.

Due to the prohibitory computational cost of identifying the complete Pareto
Front of solutions, the problem setting considered in this work involves finding a
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Pareto-optimal set (Pareto set) of a finite number of solutions instead of the com-
plete continuous Pareto front. Multi-objective evolutionary algorithms (MOEAs) are
a popular choice for solving such problems. However, MOEAs typically require a
large number of objective function evaluations to converge and offer viable solutions.
Cheap-to-evaluate mathematical models can be used with MOEAs in practice, but
solutions cannot be guaranteed to be accurate. Surrogate-based optimization (SBO)
algorithms reduce the number of objective function evaluations required during the
optimization process and can be used in conjunction with mathematical models and
CFD simulations.

Given the expensive nature of high-quality data, it is important to utilize all available
fidelities. SBO algorithms typically select data points during the optimization process,
which are then evaluated and used to update the surrogate. This acts as a continuous
validation mechanism and requires the availability of a simulation code. When only
precomputed (old) data are available (e.g., from previous physical experiments or old
CFD simulations), time constraints and practicality do not offer the freedom to request
additional data at arbitrary locations. Therefore, there is a need for an optimization
scheme which can utilize multiple fidelities of available data to optimize the shape of
a cyclone separator.

This paper presents an algorithm that trains a surrogate model using multiple fideli-
ties of available data. The surrogate model can then be used as a replacement of
mathematical models or CFD simulations by MOEAs to obtain a Pareto set of solu-
tions. Recursive co-Kriging formulation is used to train the model, with the scheme
being demonstrated using three fidelities of data (physical experiments, CFD simu-
lations and analytical models in order of decreasing quality). The novelties of this
work include triple-fidelity surrogate modeling (not many works can be found in the
literature that attempt it), training a sub-Kriging model from a million-point dataset,
and handling missing output dimensions.

The paper is organized as follows. Section 2 presents the detailed description of
the problem of cyclone shape optimization. Section 3 introduces Kriging models,
and the recursive co-Kriging formulation. Section 4 explains the proposed algorithm
for training a multi-fidelity recursive co-Kriging model. Sections 5 and 6 list the
experimental setup and discuss the results, respectively. Section 7 concludes the paper.

2 Geometry Optimization of a Gas Cyclone Separator

Gas cyclones are separation devices that apply a swirl to separate out the dispersed
phase (solid particles) from the continuous phase (gas) [1,2]. They have been widely
used in many industrial applications for many years. The advantages of cyclones
over other separation devices include simple construction, low maintenance and no
moving parts. The tangential inlet Stairmand high-efficiency cyclone [3] shown in
Fig. 1 is widely used to separate particles from a gaseous stream. The gas-solidmixture
enters tangentially which produces a swirling motion. The centrifugal forces throw
the particles to the wall, and they are eventually collected at the bottom of the cyclone.
The gas (with some small particles) changes its direction and exits from the top of the
cyclone.
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Fig. 1 Schematic diagram of
the gas cyclone separator

Although the geometry of the gas cyclone is simple, the flow is three-dimensional
and unsteady. The swirling flow in the cyclone makes the study of gas cyclones more
complicated. A wide range of industrial applications of gas cyclones has stimulated
many experimental research studies toward the flow pattern and the performance of
gas cyclones [1]. These experiments are generally costly because they involve manu-
facturing of gas cyclones and using expensive measurement techniques such as laser
Doppler anemometry, and particle image velocimetry [4,5]. With the availability of
computing resources, CFD has become an alternative approach to study cyclone sep-
arators [2,6,7]. CFD is currently used to study the flow pattern [8–11], as a simulator
for CFD based geometry optimization with different surrogate models [7,12–16] as
well as for shape optimization using the adjoint method [17]. Analytical models based
on simplified theoretical assumptions are still in use for prediction of cyclone perfor-
mance [18–23]. For further details regarding the most widely used analytical models
in gas cyclone performance prediction, the reader is referred to Hoffmann and Stein
[23] and Elsayed [24].

The dominant factor influencing the cyclone performance and flow pattern is the
cyclone geometry [24]. The cyclone geometry is described by seven basic dimensions,
namely the cyclone inlet height a and inlet width b, the vortex finder diameter Dx and
length S, barrel height h, total height Ht and cone-tip diameter Bc [24] as shown in
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Fig. 1. All the parameters are given as the respective ratios of cyclone body diameter
D.

The two performance indicators widely used in low-mass loading gas cyclones
are the pressure drop and the cutoff diameter x50 [12,24]. The cutoff diameter x50
is defined as the particle diameter which produces a 50% separation efficiency [23].
In some other studies, the overall collection efficiency is used instead of the cutoff
diameter. The literature has some empirical formulae that can use x50 to generate the
grade efficiency curve (particle diameter versus the collection efficiency) [23].

The problem of geometry optimization for gas cyclones has been well-studied in
the literature. Ravi et al. [25] carried out a multi-objective optimization of a system
of N identical cyclone separators in parallel. The two objectives were the overall
collection efficiency and the pressure drop. Salcedo and Candido [26] conducted two
optimization studies to maximize cyclone collection and an efficiency/cost ratio. They
applied the Mothes and Loffler [27] analytical models.

Swamee et al. [28] optimized the number of parallel cyclones, the barrel diameter
and vortex finder diameter at a certain gas flow rate. The two cost functions (the
pressure drop and cutoff diameter) were blended into a single objective problem [17].

Safikhani et al. [29] performed amulti-objective optimization of cyclone separators
using an artificial neural network surrogatemodel. Pishbin andMoghiman [30] applied
genetic algorithms with seven geometrical parameters using 2-D axisymmetric CFD
simulations.

There are many other optimization studies such as [7,13–16] where the source of
training data for surrogate models is either experimental data, CFD simulations or
analytical models. Elsayed [13] applied co-Kriging in the geometry optimization of
gas cyclone using two sources of training data; CFD and an analytical model.

It is preferable to use dimensionless numbers in the design variables and the two
performance parameters. The dimensionless pressure drop (Euler number, Eu) is
defined as [23],

Eu = Δp
1
2ρV

2
in

, (1)

where Δp is the pressure difference between the inlet and the exit sections, ρ is the
gas density, and Vin is the average inlet velocity [24].

The Euler number can be modeled using different models. Elsayed [24] recom-
mends the Ramachandran et al. [19] model for prediction of the Euler number. It is
reported that the Ramachandran model is superior to Shepherd and Lapple [31], and
Barth [32] models and results in a better agreement with experimental results. Con-
sequently, this study considers only the Ramachandran model to estimate the Euler
number.

The Stokes number [33] Stk50 is a dimensionless representation of cutoff diameter
[24],

Stk50 = ρpx
2
50Vin/(18μD), (2)

where ρp is the particle density and μ is the gas viscosity.
The Iozia and Leith model [18] exhibits good agreement with experimental data,

[23,24] and will be used in this study to estimate the Stokes number values.
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In the calculation of the cyclone performance parameters, the following constants
have been used. The barrel diameter equals D = 31×10−3 m. This value represents a
sampling cyclone (suited to a number of different applications in health-related aerosol
sampling [34]). The volume flow rate is 50L/min. The air and particle densities are
1.225, 860kg/m3, respectively. The air viscosity equals 1.7894 × 10−5 Pa s.

Finally, the optimization problem is formulated over x = (a, b, Dx , Ht, h, S, Bc)

as,

min
x

Eu(x), Stk50(x)

such that 0.4 ≤ a ≤ 0.7, 0.14 ≤ b ≤ 0.4

0.4 ≤ Dx ≤ 0.75, 3 ≤ Ht ≤ 7

1 ≤ h ≤ 2, 0.4 ≤ S ≤ 2

0.2 ≤ Bc ≤ 0.4. (3)

3 Surrogate Models

Surrogate-based optimization (SBO) methods have proven themselves to be effective
in solving complex optimization problems and are increasingly being used in different
fields [35–39]. SBO methods may directly solve the optimization problem (e.g., the
EGO [40] or EMO [41] algorithms) or may train a surrogate model to be used in lieu
of expensive simulators with traditional optimization algorithms. This work concerns
the second scenario: training a surrogate model to replace an expensive simulator.

Evolutionary multi-objective algorithms like NSGA-II [42], SMS-EMOA [43] and
SPEA2 [44] are popular but typically consume a large number of function evalua-
tions to converge. This limits their use in computationally expensive multi-objective
optimization problems. A possible solution is to use the previously trained cheap-to-
evaluate surrogate model instead of the expensive simulator.

Popular surrogate model types include Kriging, radial basis function (RBF), sup-
port vector regression (SVR), Splines. This work uses co-Kriging models, which are
explained below.

3.1 Kriging

Kriging models are very popular in engineering design optimization [45]. This is
partly due to the fact that Kriging models are very flexible and provide the mean
and prediction variance which can be exploited by statistical sampling criteria. Their
popularity also stems from the fact that many implementations are widely available
[46–49].

Assume a set of n samples X = (x1, . . . , xn)′ in d dimensions having the target
values y = (y1, . . . , yn)′. A Kriging model consists of a regression function h(x) and
a centered Gaussian process Z , having variance σ 2 and a correlation matrix Ψ ,

Y (x) = h(x) + Z(x). (4)

123



J Optim Theory Appl (2017) 175:172–193 179

The n × n correlation matrix Ψ of the Gaussian process is defined as,

Ψ =
⎛
⎜⎝

ψ(x1, x1) . . . ψ(x1, xn)
...

. . .
...

ψ(xn, x1) . . . ψ(xn, xn)

⎞
⎟⎠ , (5)

with ψ(xi, xj) being the correlation function having hyperparameters θ . The correla-
tion function greatly affects the accuracy of the Kriging model used for experiments,
the smoothness of the model and the differentiability of the surface. This work uses
the squared exponential (SE) correlation function,

ψ(xa, xb) = a2 exp
(
−0.5‖xa − xb‖2/ l2

)
,

with l =
√∑d

i=1 θi (xia − xib)
2. The hyperparameters θ are obtained using maximum

likelihood estimation (MLE).
The prediction mean and prediction variance of Kriging are then derived, respec-

tively, as,

ŷ(x) = α + r(x) · Ψ −1 · (y−1α), (6)

s2(x) = σ 2
(
1 − r(x)Ψ −1r(x)� + (1 − 1�Ψ −1r(x)�)

1�Ψ −11

)
, (7)

where 1 is a vector of ones, α is the coefficient of the constant regression function,
determined by generalized least squares (GLS), r(x) is a 1 × n vector of correlations
between the point x and the samples X , and σ 2 = 1

n (y − 1α)�Ψ −1(y − 1α) is the
variance.

3.2 Recursive Co-Kriging

An autoregressive co-Kriging formulation was proposed by Kennedy and O’Hagan
[50]. Le Gratiet [51] reformulated the standard autoregressive co-Kriging (introduced
by Kennedy and O’Hagan) in a recursive way. This recursive co-Kriging model scales
better with the increasing number of fidelities and is used in this work.

Let there be two fidelities of data available—cheap and expensive. The objective
is to combine predictions from Kriging models trained using each of the two datasets
in order to maximize available training data and increase the accuracy of predictions.
The rationale behind recursive co-Kriging is that the two separately trained Kriging
models (and indeed the two datasets) are correlated, and there exists a scaling factor
γ that can be used to calibrate the predictions from the two Kriging models.

Let ŷc(x) and ŷe(x) be the function estimates from Kriging models trained using
cheap and expensive data (Xc, yc) and (X − e, ye), respectively. Let ŷd(x) be the
estimate fromaKrigingmodel trained from residuals of the scaled cheap and expensive
data (Xe, yd = ye − γ ŷc(Xe)). Then the co-Kriging estimate ŷCoK (x) is defined
regressively as,
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ŷCoK (x) = γ ŷc(x) + ŷd(x), (8)

where γ is the scaling hyper-parameter estimated using MLE.
The following section describes the training algorithm used to train a triple-fidelity

recursive co-Kriging model using the method described above.

4 The Training Algorithm

Let XA, XCFD and XExp represent the three fidelities of available data, namely data
from analytical models, existing data available from CFD simulations and existing
experimental data, respectively. The following subsections explain how each fidelity
of data is used for training the recursive co-Kriging model.

4.1 Analytical Models

Aone-shotKrigingmodelKA is trained on the dataset (XA, yA) using theGPatt frame-
work [52]. The learning process corresponding to the formulation of Kriging described
in the previous section involves a complexity of O(n3) for n training instances. The
computationally expensive part requires the calculation of the inverse of a correlation
matrix Ψ . This usually involves computing the Cholesky decomposition of Ψ requir-
ing O(n3) operations and O(n2) storage. This limits the applicability of the usual
formulation of Kriging to relatively smaller datasets.

Assuming data are present on a Ns
d grid, GPatt exploits the grid structure to repre-

sent the kernel as a Kronecker product of d matrices. This allows exact inference and

hyper-parameter optimization in O(dn
d+1
d ) time with O(dn

2
d ) storage (for d > 1).

Let X1,X2, . . . ,Xd be multidimensional inputs along a Cartesian grid with x ∈
X1 × X2 × · · · × Xd . Assuming a product correlation function,

ψ(xa, xb) =
d∏

p=1

ψ(x(p)
a , x(p)

b ), (9)

the n × n correlation matrix Ψ can be represented by a Kronecker product Ψ =
Ψ1

⊗
Ψ2

⊗ · · · ⊗Ψd . This allows efficient calculation of the eigendecomposition
of Ψ = QV Q� by separately calculating the eigendecomposition of each of
Ψ1, Ψ2, . . . , Ψd . Similarly, Kronecker structure can also be exploited to allow fast
computation of matrix vector products [53]. For a detailed explanation, the reader is
referred to Wilson et al. [52].

Sincemathematical or analyticalmodels are cheap to evaluate and allow the freedom
of choice of parameter combinations, it makes them an ideal choice to use with the
GPatt framework. To this end, a Gaussian process (GP) model is trained on parameter
combinations lying on a 7D grid of Ns points. This essentially means that Ns points
span the range of each parameter, and the grid consists of all possible combinations of
input parameters, each consisting of Ns points. This results in a total of (Ns)

7 points
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comprising the grid and form the set of samples XA. The analytical model(s) are used
to evaluate XA to obtain yA. The model KA provides estimates as ŷA(x).

4.2 CFD Data

Several validated CFD simulations results conducted by Elsayed and Lacor [14] have
been used in the fitting of themulti-fidelity surrogatemodels in this study. The available
CFD data XCFD consist of n = 33 points with four of seven dimensions varying (X1
to X4, corresponding to the inlet width and height, the vortex finder diameter and the
total cyclone height), while the remaining are fixed at h = 1.5, S = 0.5, Bc = 0.3750,
respectively. Therefore, only a 4D Kriging model KCFD was trained on the CFD data
using the ooDACE toolbox [48]. The 4D model is extended to 7D by concatenating
the hyperparameters of the three fixed dimensions from the model KA learned above.
Model training and description follows the explanation in Sect. 3.1.

Let ŷA(x) be the estimates obtained on a given point x using the modelKA. Let ŷd1
be the estimate from the Kriging model trained from residuals of analytical and CFD
data scaled using parameter γ1, (XCFD, yd1 = yCFD − γ1 ŷA(XCFD)). Then estimates
on the point x are obtained recursively as,

ŷCFD(x) = γ1 ŷA(x) + ŷd1(x), (10)

where γ1 is the scaling parameter described in Sect. 3.2.

4.3 Experimental Data

Experimental data XExp of n = 96 points available in the literature for the Euler
number values [16] are used to train the Kriging model KExp using the ooDACE
toolbox [48]. The model itself is trained as explained in Sect. 3.1.

However, objective function values for only one objective (the Euler number) are
available. Consequently, a double-fidelity co-Kriging model is trained in lieu of a
triple-fidelity co-Kriging model for the second objective (the Stokes number).

Letγ2 define the scalingbetweenCFDandexperimental data. Let ŷd2 be the estimate
from the Kriging model trained from residuals of scaled CFD and experimental data
(XExp, yd2 = yExp − γ2 ŷCFD(XExp)). The estimate of the model KExp on the point x
is given by,

ŷExp(x) = γ2 ŷCFD(x) + ŷd2(x). (11)

The process of estimation of scaling parameters γ1 and γ2 is described below.

4.4 Estimation of the Scaling Parameter

The scaling parametersγ1 andγ2 are estimated using cross-validation using the scheme
describedbyLeGratiet [51]. Essentially, the cross-validationprocedurewasperformed
in two stages. The first stage involved cross-validation the double-fidelity co-Kriging
model trained using analytical models and CFD data, with CFD data divided into
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Fig. 2 The Pareto set obtained using the SMS-EMOA algorithm

partitions for training and testing. This yielded the value of γ1 to be used for scaling
between the sub-Kriging models trained using CFD and analytical data. Similarly, the
second stage involved partitioning the experimental data into folds, while the sub-
Kriging models obtained using CFD data and analytical models were not modified.
This yielded the value of γ2 for scaling between the sub-Kriging models trained using
experimental data, and CFD data.

5 Numerical Settings

For the purpose of obtaining XA, the number of points in each dimension of the grid
Ns = 7. This results in n = 77 = 823,543 training points in XA forKA. The recursive
co-Kriging model is used as the objective function to be optimized using the SMS-
EMOA algorithm [43]. The size of the initial population is set to 100 individuals
allowed to evolve until the total number of objective function evaluations reaches
10,000.

6 Results and Discussion

The SMS-EMOA algorithm evolved the population of size 100 into a Pareto set of 100
solutions, which are shown in Fig. 2 and listed in Table 1. The solutions arewell-spread
and show an improvement over past approaches. A comparison with previous results
obtained using multi-objective surrogate-based optimization with the EMO algorithm
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Table 2 Error estimates obtained using cross-validation

Model MSE BEEQ

Eu Stk50 Eu Stk50

Double-fidelity: CFD+analytical 3.1254 0.0773 3.1393 0.8637

Triple-fidelity: experimental+CFD+analytical 0.6699 – 0.6776 –

[12] can also be seen in Fig. 2. Admittedly, the comparison is not completely fair since
the previous approach only utilized data from analytical models, while the proposed
approach incorporated experimental and simulated data in addition to data froman ana-
lytical model. Nevertheless, the results confirm that a more accurate surrogate model
for the optimization problem is obtained when all available data are incorporated.

Since the trained model is used as a surrogate model to be treated as the objective
function by SMS-EMOA, its accuracy is crucial. Toward this end, cross-validation
of the multi-fidelity recursive co-Kriging model was performed using the scheme
described in Sect. 4.4.

Table 2 lists the mean squared error (MSE) and Bayesian estimation error quotient
(BEEQ) estimates obtained using cross-validation, as described above. BEEQ [54]
quantifies the improvement of error of a Bayesian estimator ŷ, over the prior mean ȳ,
or of the updated estimate ŷ of a recursive estimator over the predicted estimate ŷ. It

is defined as BEEQ(ŷ) =
(∏n

i=1 βi

)1/n
, where:

βi = ‖yi − ŷ(xi )‖
‖yi − ȳ(xi )‖ .

The closer the value of BEEQ to 0, the better the model. BEEQ brings the advantage
of nullifying the effect of very large or small magnitudes of values on error estimates.

The double-fidelity recursive co-Kriging model obtained using CFD data and
analytical models is very accurate for the Stokes number with MSE=0.0773 and
BEEQ=0.8637. Considering the fact that the absolute range,

(max(yCFD) − min(yCFD)),

for Stokes number is 1.8765, a mean error of
√
0.0073 = 0.0854 is a very good result.

Similarly, the absolute range for the Euler number is 3.1139. A mean variation of√
3.1254 = 1.7679 units and a BEEQ score of 3.1393 is not an excellent result, but

considering the model is a 7D model trained using only 33 data points, the results are
acceptable. Moreover, using the sub-Kriging model trained from experimental data
improves the accuracy of the final triple-fidelity model for the Euler number. The
absolute range of the Euler number in the experimental dataset is 4.2124. A mean
variation of

√
0.6699 = 0.8185 and a BEEQ score of 0.6776 is a much better result

compared to using only the double-fidelity co-Kriging model and serves to capture
the general trend of the problem under consideration.
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Fig. 3 The resulting Pareto set. Each Pareto-optimal solution corresponds to a point in the figure repre-
senting the mean of variance (uncertainty) of prediction for both objectives, according to the co-Kriging
models

Another advantage of using the co-Kriging model is that it can be used to obtain
the variance of prediction of all Pareto-optimal points. Figure 3 shows the variance of
prediction for each Pareto-optimal solution as an ellipse. The major axis of a particular
ellipse corresponds to the variance of prediction for the Euler number, and the minor
axis corresponds to the variance of prediction for the Stokes number. The availability of
such information can aid the practitioner in selecting a particular Pareto-optimal solu-
tion over another, since it may be impractical to validate all Pareto-optimal solutions
using CFD simulations, or experiments. A representative solution is shown in Fig. 4.
The solution having the least variance of prediction obtained using the co-Kriging
surrogate model was selected to be evaluated as a potential design, and plotted.

7 Conclusions

The problem of cyclone shape optimization involves computationally expensive sim-
ulations, and data from time-consuming experiments. Existing approaches do not
take multi-fidelity data into account. This work proposes a novel approach to com-
bine existing data from experiments, CFD simulations and mathematical models to
train a tripe-fidelity recursive co-Kriging surrogate model. The novelties include han-
dling missing output dimensions and performing co-Kriging with sub-Kriging models
trained using million-point datasets. The surrogate model is used as a replacement for
the expensive data in a conventional optimization algorithm like SMS-EMOA. Experi-
mental results indicate that the proposed approach leverages the advantages ofmultiple
fidelities of data to result in an accurate surrogate model which leads to a good Pareto
set of possible solutions. The accurate surrogatemodel allows thousands of evaluations
to be computed cheaply, enabling optimization algorithms like SMS-EMOA to find
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Fig. 4 Cyclone shape
corresponding to a
representative Pareto-optimal
solution chosen according to
minimum variance of prediction
of the co-Kriging surrogate
model. The design parameters
(a, b, Dx , Ht, h, S, Bc) =
(0.4, 0.2605, 0.4938, 3.9999,
1.3227, 0.4082, 0.2172)

high-quality solutions in a very short time. Comparison of the proposed approach to
state-of-the-art approaches shows substantial improvement in the obtained solutions.
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Appendix A

A.1 Ramachandran Model

TheRamachandran et al. [19]model has been constructed through a statistical analysis.
The Euler number Eu is given,
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Eu = 20

{
a b

D2
x

}{
S
D

H
D

h
D

Bc
D

}1/3

. (12)

A.2 The Iozia and Leith Model

The Iozia and Leith model [18] is based on the equilibrium-orbit theory (Force bal-
ance).

x50 =
{
(9 μ Q) /

(
π HCS ρp V 2

θmax

)}1/2
, (13)

where ρp is the particle density..
Where HCS is the core height and Vθmax is the maximum tangential velocity that

occurs at the edge of the control surface CS. In this model, the values of the core
diameter dc and the tangential velocity at the core edge Vθmax are calculated via a
regression of the experimental data as follows,

Vθmax = 6.1vin

{(
ab/D2

)−0.61
(Dx/D)−0.74 (Ht/D)−0.33

}
, (14)

dc = 0.52D
(
ab/D2

)−0.25
(Dx/D)1.53 . (15)
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