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Abstract—Non-intrusive load monitoring methods aim to dis-
aggregate the total power consumption of a household into
individual appliances by analysing changes in the voltage and
current measured at the grid connection point of the household.
The goal is to identify the active appliances, based on their
unique fingerprint. This information can be communicated to
the electricity provider and the end-user enabling the potential
of smart grids. An informative characteristic to attain the
appliance classification is the voltage-current trajectory. In this
paper, this trajectory is represented as a binary image from
which the contours are extracted. From these contours, the
elliptic Fourier descriptors are calculated and used as input for
several classification algorithms outputting the appliance name.
Benchmarking this method on the PLAID dataset shows that
the descriptors can yield a prediction accuracy up to 79%,
comparable to the state-of-the-art, based on only a very compact
representation (12 numbers).

I. INTRODUCTION

Nowadays, the use of smart grids is becoming predominant
[1], [2]. Some factors that motivate the transition to smart grids
are, among others, (1) meeting renewable energy targets, (2)
system efficiency improvements, (3) reliability improvements,
(4) enabling customers choice and participation, (5) enabling
new services, products and markets, and (6) improving energy
efficiency [3]. To achieve these goals in terms of technology
priorities, it is critical to develop renewable energy sources
(RES), and means to integrate them in a way that deals with
their uncontrollable variability. To cope with abundant RES,
it is crucial to have demand response (DR) capabilities to
shift power consumption in time, e.g., to periods with high
availability of RES power. On a residential level, DR can be
achieved by shedding high energy consuming appliances at the
request of the provider. To this end, non-intrusive load moni-
toring (NILM) is proposed to check whether these appliances
are active and responsive to the shedding instructions [4], [5],
[6]. NILM will detect status changes of household appliances
(e.g., ON/OFF events) by analysing the total household energy
consumption measured with a smart meter. This smart meter
is located at the users’ home so that the measurements are
done local. Once the changes are detected (e.g., using robust
event detection methods [7]), the measured signals can be
used to recognize and classify the corresponding appliances.
Using NILM, it is possible to communicate (1) to the energy
provider which appliances are active and responsive to the
shedding commands, and (2) to the end user the appliance
usage statistics.
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Fig. 1: The classification workflow.

In this paper, the problem of classifying appliances based
on their voltage-current trajectories is addressed by apply-
ing object recognition algorithms on the binary image of
these trajectories. The next section covers the related work
concerning these images and appliance recognition. Section
IIT explains the different steps on how to describe objects
in images: (1) find the contours, (2) calculate the elliptic
Fourier descriptors of the contours. Section IV describes three
machine learning methods used for classifying the appliances
using the elliptic Fourier descriptors. Section V benchmarks
the suggested method on the PLAID dataset and Section VI
concludes the paper. The approach of this paper is visualised
in Figure 1.

II. RELATED WORK

Classifying active appliances is mostly done by extracting
features from the monitored data and training a machine
learning classifier. The type of features depends strongly on the
sampling rate of the measurements. When using low frequency
data (< 1 Hz), the most common features are the power levels
and the ON/OFF durations [8]. A drawback of this approach is
that only energy-intensive appliances can be detected. This can
be alleviated by performing fine-grained measurements at the
cost of an increased data storage rate and more complex data
analytics. It is then possible to calculate features such as the
harmonics [9] and frequency components [10] from the steady-
state and transient behavior of the current and voltage signal.
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Fig. 2: The original VI trajectory (left) and the corresponding
binary VI image (right).

More recently, the possibility to consider voltage-current (VI)
trajectories has also been considered [11], [12], [13], [14].

The VI trajectory of an appliance is obtained by plotting
the voltage against the current for a defined time period when
the appliance is turned on, see Figure 2a. It is shown in [11]
that manually extracting features from the VI trajectory such
as the enclosed area, slope of the middle segment, etc. can be
informative to classify the appliances.

Nevertheless, extracting features from the VI trajectory is
not straightforward. As an alternative, the VI trajectory can be
converted into a binary VI image (n X n matrix) by meshing
the VI trajectory, see Figure 2b. In [12], [13], each cell of
the mesh is assigned a binary value that denotes whether or
not it is traversed by the trajectory. Based on this binary VI
image, several features can be extracted to classify different
power loads [13]. Examples of features are the number of
continuums of occupied cells, or the binary value of the left
horizontal cell and central cell. In [12], the binary VI image is
transformed into an input vector that can be fed directly into a
classifier like random forests to classify different appliances.

In order to distinguish appliances based on their VI trajec-
tories, powerful measurement devices must be used that are
able to sample high frequency data.

In this paper, object recognition methods are used to rec-
ognize the contours of a VI trajectory in the binary image,
and to describe them using elliptical Fourier descriptors, see
Section III.

III. OBJECT RECOGNITION

Object recognition is a fundamental problem in computer
vision and its concepts have been applied in multiple fields,
such as distinguishing biological species [15], optical char-
acter recognition [16], and face recognition [17]. In object
recognition, the contours of an object are identified from
the image, characterised by elliptic Fourier descriptors and
then classified with a label. In this paper, object recognition
methods are used to recognize the contours of a VI trajectory
in the binary image, and to describe them using elliptical
Fourier descriptors. The next subsections explain these steps.

Fig. 3: The lookup table consisting of sixteen different cases
in which parts of the contour is formed.
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Fig. 4: Identification of the contours from VI trajectory of a
washing machine. Only the outer contour is used for object
classification.

A. Contours

The contour of an object in an image is a closed curve
that forms the boundary of that object. The marching squares
algorithm [18] can be used to find all contours in an image.
The basic idea is that every pixel of the image is examined
and matched with one of the sixteen cases shown in Figure 3.
Each case creates at most two edges. Similar results can be
obtained using other contour algorithms [19].

Figure 4 shows the detected contours of the VI trajectory
of a washing machine. This example has four contours, from
which only the outer one is of interest. To avoid that the
trajectory touches the border, extra pixel rows and columns
are added to the sides. Otherwise this would result in two
separate outside contours instead of one.

The outer contour is a closed curve that resembles the shape
of a smoothed VI trajectory. In contrast to the original VI
trajectory, all points on the contour are separated uniformly,
such that the Euclidean distance between neighbouring points
on the contour is the same.

B. Elliptic Fourier descriptors

Once the contour is identified, elliptical Fourier descriptors
(EFD) are used to match it with the corresponding appliance.
A brief outline is given in this section, and the reader is
referred to [20], [21] for mathematical details.
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Fig. 5: Original (blue) and approximated (red) contours of
the VI trajectory of an appliance with increasing number of
coefficients.

EFDs define the contour as the sum of a certain number
of ellipses (£) required to mimic the shape. Each ellipse
is formed by two sets of partial differential equations, each
having sine and cosine terms. One set of equations is defined
along the z-axis and the other one along the y-axis. This
is a transformation from the spatial domain to the frequency
domain:

E-1 E-1
o(t) = Ag+ > Accos(et) + By + Y Besin(et) (1)
e=1 e=1
E-1 E—-1
y(t) = Co+ Y _ Cecos(et) + Do+ »  Desin(et)  (2)
e=1 e=1

where Ay, By, Cy, and Dy are the constants, A., B, C.,
and D, are the harmonic coefficients of the e™ order, and ¢
represents the points sampled from the time axis given by the
period 2m. By and Dy are zero and can be omitted from the
formula.

Each harmonic is thus described by four Fourier coeffi-
cients, two each for the z- and y-axis, generating a total of
4 - I coefficients. The first harmonic describes the overall
shape, location, size, and rotational orientation of the contour.
Additionally, consecutive harmonics can be included to capture
more detailed information about the contour’s complexity.
Figure 5 shows the reconstruction of the contour when using
up to ¥ = 6 harmonics. The approximated contour better
resembles the original contour when more harmonics are
included. Using 4 - E EFDs, it is possible to recreate the
contour without requiring prior expertise on the important
features to represent it.

IV. OBJECT CLASSIFICATION

The object recognition results in a vector of size 4 - E. This
vector can be used as input for classification algorithms. This
paper focuses on three methods: logistic regression, random
forests and a simple neural network (non-linear model).

A. Logistic Regression

For a binary problem, logistic regression (LR) predicts the
probability that a sample belongs the ‘1’ class versus the
probability it belongs to the ‘0’ class given one or more
independent input variables. For the multi-class problem, a
binary logistic regression is fitted for each label, creating
a one-versus-all solution. The error function for a binary
problem with m samples is:

C m k
Cost = —— 1‘10 Al' +(1— i lo 17Ai + ’LU2 3
m;y 8(§:)+(1—y:) log(1—3s) ; 73
where y; and g; are respectively the real and predicted output
of sample ¢, and C' is a trained regularization parameter that
controls the model complexity. When C' is small, the first sum
in the error function is smaller implying that the learning is
slower and the regularization is stronger. The second sum
consists of the trainable squared weights w;, one for each
input feature. This sum forms an additional method to prevent
overfitting, called L2 regularization, implying that a solution
with small weights is preferred over a solution with large
weights.

B. Random Forest

A random forest (RF) is an ensemble technique that classi-
fies the data using a collection of decision trees. Each decision
tree is trained on a subset of the dataset that has the same
size as the original training set, but samples are drawn with
replacement. At each node of the decision tree, a feature is
selected and the tree is traversed downwardly (either following
left/right branch) by comparing its value to a threshold. Given
a new sample, the output of each decision tree is averaged to
obtain the final prediction.

The parameters that must be trained, are the amount of trees
t and the maximal amount of features f that are considered in
each node to decide upon what the optimal split is. In our case,
f is at most 4- F, the total amount of coefficients representing
the contour.

C. Neural Networks

The architecture of a neural network (NN) consists of
different layers, see Figure 6. The first layer is the input layer
containing as many nodes as the dimension of a sample (here,
4 - E). This is followed by one (or more) fully connected
layers which are hidden. Each of these layers contains a certain
amount of nodes that have learnable weights and biases, which
define a linear transformation of the node’s inputs, after which
a non-linearity is performed optionally. This non-linearity is
often obtained by using a rectified linear unit that replaces all
negative values by zero. At the end, the output of the last fully
connected layer is fed into the output layer. Since the NN is
used for classification, the output layer has K nodes with K
equal to the amount of classes. The values of the output nodes
are chosen to lie between 0 and 1 and sum up to 1, which
is achieved by applying the softmax function. In other words,
each node represents the probability that the EFDs corresponds
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Fig. 6: A neural network consisting of an input layer, two fully
connected layers and an output layer.

to a given label. The output node with the maximal value
represents the predicted class.

By providing training data, the weights of the network can
be learned in such way that the predicted output is close to the
real output. The learning rate o controls the speed of learning
and is a parameter that needs to be trained. A smaller value
reduces the risk of overfitting, at the cost of slower learning.

The parameters that are trained for neural network are
the learning rate «, the amount of dense hidden layers and
the amount of nodes in each layer. The last two parameters
are symbolized by (hi,ha, ..., h,), where h; represents the
number of nodes in the hidden layer ¢, and n is the number
of hidden layers.

V. RESULTS
A. Benchmark dataset

Ideally, to test the proposed method, a dataset having high
frequency aggregated and high frequency sub-metered V' and [
signals would be used. However, to the best of our knowledge,
no public dataset includes both. For this reason the PLAID
[22] dataset is considered. Plug-Load Appliance Identification
Dataset (PLAID) [22] is a public dataset including sub-
metered current and voltage measurements sampled at 30 kHz
for 11 different appliance types. More than 200 individual
appliances are available, captured in 55 households. For each
appliance, at least 5 start-up events are measured, resulting in
a total of 1074 measurements.

The presented research on appliance classification is a first
step towards a more realistic NILM setting starting from the
aggregated power measurements. Still, this is a very meaning-
ful one, as typically appliances are turned on/off one at a time,
and the single appliance current (and thus VI trajectory) can be
extracted from the aggregated measurements by considering
the difference in current before and after the event. Future
work needs to confirm the practical feasibility of this idea.

B. Calculation of EFD from VI images

In order to obtain the binary VI images, the voltage and
current are collected over a time interval of 0.33 seconds,
resulting in 10000 samples. In these images, the outer contour
is detected from which the EFDs are calculated using a varying

Method  Parameter Range
LR C [10°,107,10%,10%,102,1,0.01]
NN o [10%,1073,1, 10]
[h1,...,hn]  [(10), (50), (100),
(10, 10), (50, 50), (100, 100)]
RF t (10, 20, 30, 50, 100, 200]
f [4: 4 : 4 + amountCoefficients]

TABLE I: The considered parameter ranges.

number of harmonics. These components are used as input
for three classification algorithms: logistic regression, random
forests and neural networks.

C. Classification result

The generalization properties of the model are validated
using leave-one-house-out cross-validation as recommended
in [12]. Each training set contains data from 54 houses and
the test set data from the remaining house. This is repeated
55 times. Using leave-one-house-out cross-validation allows to
validate the generalization between different appliances of the
same type as different houses, e.g., contain air conditioners
but from different brands.

In order to train the parameters of the machine learning
algorithms, grid search is performed. The ranges of the trained
parameters are shown in Table I. In order to avoid overfitting
while training these parameters, 10-fold cross-validation is
performed. The 54 houses are partitioned into 10 equally sized
subsets. Each time, 9 of those subsets are used for training and
the remaining one is used for model validation. This process
is repeated 10 times, with each of the 10 subsets used exactly
once as the validation set. The 10 results can then be averaged
to obtain a single prediction. The parameters resulting in the
best validation score are selected and used on the single test
house that was left out in the beginning.

In the end, there will be 55 test scores (one for each house).
To obtain the final test result, these values are averaged. To
evaluate the results, the following accuracy metric is used:

#correct predictions
#total predictions

Accuracy = “)

Figure 7 shows the result when using the different machine
learning methods and a varying amount of EFDs. The EFDs
are calculated from contours that were extracted from 16 x 16
sized binary VI images. Using three or more EFDs does not
significanty impact the accuracy for logistic regression and
random forests. In the case of neural networks, the accuracy
drops when more than 4 EFDs are used. The results of a
random forest are comparable to those reported in [22], where
the 16 x 16 binary VI images were used as plain input for a
random forest (81.75% accuracy).

Figure 8 shows the confusion matrices when classifying the
appliances using logistic regression, random forests and neural
networks using 3 EFDs. The values in the matrix represent the
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Fig. 7: Accuracy of the three classifiers

absolute number of appliances detected. The color represents
per appliance the relative amount with respect to the total
number of that appliance. For the three methods, appliance
classes that are difficult to classify are the same. However,
for random forest and neural network, the amount of correctly
classified appliances is higher. The low performing classes are
the heater, fridge, and AC. The heater is constantly confused
with the hairdryer, explained by the fact that both contain a
heating element. The fridge and AC are sometimes confused
with each other and also with the fan, hairdryer and ILB.

A key advantage of this approach over [22] is that the
required storage of the features is far less, albeit at a small
additional cost of computing the contours. Only 12 values
per sample should be stored compared to 256 values that are
needed to store the original 16 x 16 binary image.

VI. CONCLUSION

In this paper, the contours of the binary VI image are used
to characterise appliances in NILM. From these contours, the
elliptic Fourier descriptors are calculated and used as input for
logistic regression, random forests, and neural networks. The
results show that twelve components per sample (i.e., three
times four harmonic coefficients) are sufficient to obtain
a prediction accuracy of 77.14%. This leads to significant
(> 20x) storage savings when compared to the original VI
image comprising 16 x 16 = 256 values.
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