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Abstract—Compliance to electromagnetic compatibility (EMC)
standards is a fundamental requirement for modern integrated
circuits (ICs). In this framework, error detection in transient
susceptibility tests is of crucial importance to assess the circuit
robustness. However, performing such tests is expensive and re-
quires an ad hoc hardware, whose configuration must be adapted
for the different test setups, i.e., the transient waveforms, defined
in the EMC standards. This paper describes a novel machine
learning based approach for error detection, which only requires
the raw output data from a susceptibility test: neither additional
information about the architecture of the device under test nor the
test configuration is needed. We applied and evaluated anomaly
detection techniques (a branch of machine learning methods
focused on error detection) for transient susceptibility tests with
two pertinent examples (one simulation- and one measurement-
based). The proposed techniques detected errors successfully in
both unsupervised and supervised scenarios. Moreover, these
can give insight on the output behaviors that are more likely to
cause errors during the test. As shown by our results, an anomaly
detection-based approach is an applicable and viable solution for
automatic error detection in transient susceptibility tests.

Index Terms—Anomaly detection (AD), electromagnetic com-
patibility (EMC), machine learning, transient susceptibility.

I. INTRODUCTION

IN RECENT years, electromagnetic compatibility (EMC)
concerns have risen in importance due to the progress in

process integration, the increase in signal bandwidth, and the
modern integrated circuits (ICs) complexity. Indeed, the amount
of radio frequency (RF) emission generated by modern ICs
increases due to the factors described above, and the reduction
of supply voltage and increased number of interfaces decreases
the immunity to RF and impulse interference [1]. Hence, it
is of paramount importance for IC designers to evaluate the
compliance of their novel devices and systems with EMC
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standards. Many different types of EMC tests exist, such as the
direct transient injection (transient DPI) [2] and the RI 130 [3],
[4] tests. Note that typical EMC tests are hardware-based; a
suitable test setup is required and measurements on a prototype
of the IC must be performed to verify its compliance with the
EMC standards. The measurements must be repeated for all
the different setups of the specific EMC test considered (i.e.,
the noise pulse and the wire harness configuration can change)
leading to an expensive and time-consuming procedure.

In this contribution, we present a novel machine learning
based approach for error detection in transient susceptibility
tests. In particular, the proposed methodology aims to identify
failures and errors occurring during transient susceptibility tests
via anomaly detection (AD) techniques. These approaches focus
on identifying infrequent deviant events, which do not conform
to an expected behavior. In the proposed modeling framework,
such infrequent events or anomalies typically correspond to the
errors occurring during an EMC test. Different types of AD
techniques exist and this paper studies the application of such
methods according to the unique characteristics of the problem
at hand. For example, supposing that the design of the IC-under-
study followed EMC aware strategies, it can be expected that
the number of errors during a transient susceptibility test will
be very limited. The anomalies will add up to a very small
fraction of the available data. In the rest of this contribution,
the reader may assume that the terms “anomaly” and “error”
have the same meaning, while the former will be preferred
when discussing the proposed methodology in a more machine
learning-oriented framework, and the latter will be used mainly
in the application examples. In the proposed framework, once
an initial computational effort is made to build the machine
learning model, the model itself can be applied to different EMC
test setups for the same device under test (DUT). However, it
is not possible to directly use a model trained on a specific
DUT for error detection on a different DUT; additional tuning
is needed since, in general, the noise response depends on the
circuit design.

This paper is organized as follows. Section II gives an
overview of the properties of the different AD techniques and de-
scribes the framework adopted in this paper to build models for
error detection in transient susceptibility tests. The validation of
the proposed methodology is carried out in Section III by means
of two application examples, one based on simulations, the other
on measurements. Finally, conclusions are drawn in Section IV.

0018-9375 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-7853-8941
https://orcid.org/0000-0001-9121-5725
https://orcid.org/0000-0003-0816-6673
https://orcid.org/0000-0002-0178-288X
https://orcid.org/0000-0003-2899-4636
https://orcid.org/0000-0003-2379-5259
mailto:roberto.medico@global advance �reakcnt @ne penalty -@M ugent.be
mailto:roberto.medico@global advance �reakcnt @ne penalty -@M ugent.be
mailto:niels.lambrecht@ugent.be
mailto:dries.vandeginste@ugent.be
mailto:dirk.global advance �reakcnt @ne penalty -@M deschrijver@ugent.be
mailto:dirk.global advance �reakcnt @ne penalty -@M deschrijver@ugent.be
mailto:tom.dhaene@ugent.be
mailto:domenico.spina@ugent.be
mailto:hpu@melexis.com


MEDICO et al.: MACHINE LEARNING BASED ERROR DETECTION IN TRANSIENT SUSCEPTIBILITY TESTS 353

II. AD ON TIME-SERIES DATA

AD (also referred to as novelty, outlier, or error detection) is
a machine learning technique focused on the identification of
events that do not conform to an expected (or normal) behavior,
such as failures and errors. Several techniques exist to detect
such anomalies, and these can be classified according to how
they model the normal behavior, which machine learning model
they employ, and which types of anomalies they are able to
detect [5].

In general, when dealing with data representing a sequence
of observations evolving over time (time-series data), specific
challenges arise for data-driven machine learning techniques,
including AD ones. A strong correlation exists for sequential
data between successive data points and often anomalies can be
considered as such only within a specific time frame (context
anomalies) or together with their context (collective anomalies),
instead of merely because of individual observations’ values
(point anomalies). Several techniques have been proposed to
deal with time-series data according to the properties of the
data at hand [6]. Often the data are transformed in a format
more suitable for standard machine learning algorithms, e.g.,
by obtaining a symbolic representation of the discretized time-
series data or by extracting features from subsequences of the
raw data. If labeled data are available, i.e., normal and anoma-
lous observations are known a priori, the problem falls into the
category of supervised learning and standard machine learning
classifiers (such as neural networks or support vector machines)
can be trained on the data. Once such a model is trained, it can
be used to detect anomalies in unseen data. The training is often
complicated by the strong data imbalance (anomalous observa-
tions usually add up to a very small fraction of the total number
of observations). A classifier trained on this data needs to take
the imbalance into account and suitable evaluation metrics need
to be chosen. Several methods exist to deal with such imbal-
ance [7], e.g., by directly rebalancing the data (oversampling
the minority class or undersampling the majority class) or by
modifying the weights of each class in the classifier cost func-
tion. Boosting methods, presented in Section III-B2, have been
proven to perform well also for strongly imbalanced datasets [8].

When labeled data are not available, e.g., because anomalies
are not known a priori or it is expensive to manually label them,
other techniques falling into the semisupervised or unsuper-
vised approach can be used. In semisupervised approaches, the
model is trained only on data, which is free of anomalies and is
then employed to detect anomalies on test data (containing both
normal and anomalous observations). In the unsupervised case,
instead, no prior knowledge of the training data is given to the
model, which tries to separate normal and abnormal observa-
tions directly in the given dataset [9]. Note that, while supervised
learning approaches can lead to better results, as the model is
given more information to learn from, they are often not applica-
ble in practice given the unavailability of labeled data. The two
AD methodologies (supervised and unsupervised) presented in
this paper are based on the following steps.

1) Raw data segmentation: The raw time-series signal is split
into segments.

2) Feature vector representation: Relevant features are ex-
tracted from each segment to form the training set.

3) Model building: An AD model (k-nearest neighbors (k-
NN)[9] for the unsupervised case, gradient boosting [10]
for the supervised) is built on the training data.

4) Model evaluation: The model performance is assessed.
A detailed description of the proposed modeling framework

is given in the remainder of this section.

A. Raw Data Segmentation

The segmentation of raw time-series data is a generic
paradigm used to represent time-series data in a format more
suitable as input of standard machine learning models. A time-
series T of length Q can be split into several subsequences Si

of length L with a sliding window approach

Si = Ti:i+L ∀i ∈ {1, . . . , Q − L}. (1)

These segments can be partially overlapping or completely
disjoint.

B. Feature Vector Representation

Once the sequences Si are obtained, M features can be ex-
tracted to describe each segment as a feature vector Fi

Fi =
[
f

(i)
0 , f

(i)
1 , . . . , f

(i)
M

]
∀i ∈ {1, . . . , Q − L}. (2)

These features can be summary statistics, e.g., the maximum,
minimum, mean in the considered interval, or features engi-
neered ad hoc for the problem at hand. This representation
allows one to considerably reduce the dimensionality of the
dataset when M is chosen such that M � L. The new represen-
tation can then be used as input training data for a machine learn-
ing model. Consequently, identical preprocessing steps need to
be applied to the test data in order to detect anomalies.

C. Model Building: Hyperparameters Tuning

Once the type of AD technique is chosen (supervised, semisu-
pervised, or unsupervised), a crucial step for building a machine
learning model is hyperparameters tuning. The hyperparameters
of a model control how complex the model decision boundary
is and how well the model fits to the training data. On one hand,
when such complexity becomes too large, the model can start
overfitting the training data, i.e., the model learns to represent the
training data too well with an overly complex decision bound-
ary and is not able to generalize to new data. Consequently, the
model performance deteriorates on the test data. On the other
hand, if the complexity is too low, the model decision boundary
could be too simple and unable to properly discriminate be-
tween normal and anomalous classes. In this case, the model is
underfitting the training data and usually this leads to a decrease
in performance for both training and test data.

D. Model Evaluation

This step quantifies how well the AD model is performing
for the task at hand via a suitable metric, which is the indicator
of the model performance and can also be used to tune the
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hyperparameters, as shown in Section III. Considering the rarity
of anomalous events, which leads to a strong data imbalance,
standard metrics such as accuracy or the area under the receiver
operating characteristic (ROC) curve can be misleading in the
context of AD [11], as results close to 100% can be easily
obtained by classifying any observation as not anomalous.

Therefore, AD techniques are often evaluated with alternative
metrics such as precision, recall, and F1 on the anomalous class.
Precision (P ) and recall (R) can be defined in terms of true
positives (TP, when a detected anomaly corresponds to an error
of the EMC test performed), false positives (FP, when a detected
anomaly is not actually an error), and false negatives (FN, when
an error is not detected as an anomaly); the F1 measure is the
harmonic mean of precision and recall

P =
TP

TP + FP
, R =

TP
TP + FN

, F1 = 2
P · R
P + R

. (3)

Hence, the precision represents the confidence of the model in
its error detection, whereas the recall indicates how many errors
the model identifies out of all the errors that actually exist. These
metrics require the model output to be discrete: for example, 0
for normal instances and 1 for anomalies. However, it is often
preferable to have probability scores instead of a binary output
to properly represent the likelihood of an event to actually be
anomalous. In the latter case, a threshold on the probability
needs to be chosen to classify instances and to compute the
metrics in (3).

An informative threshold-independent measure to check and
compare AD performance is the area under the precision–recall
(PR) curve, which is a curve consisting of precision and recall
pairs obtained by changing the decision threshold on the pre-
dicted probabilities. In scenarios with binary classification on
highly imbalanced data, the PR curve can be more informative
than other standard measures, like the ROC curve [11]. Indeed,
the area under such curve (indicated as PR-AUC in the rest of
this paper) summarizes the performance into a single metric
robust to data imbalance.

III. APPLICATION EXAMPLES

This paper describes two application examples of error de-
tection in transient susceptibility tests via AD techniques. In the
first example, the transient susceptibility test is performed via
simulations, whereas in the second example, measured data are
used.

A. IC-Level Transient DPI Test—Unsupervised AD

The IC under test is a digital counter, designed by using the
74HC74 datasheet [12] as a reference. In order to perform a
transient DPI test, suitable coupling and decoupling networks
are designed at each input/output and power supply pin, as
shown in Fig. 1.

Indeed, the purpose of the coupling network is to efficiently
couple the transient disturbance signal to the IC, whereas the
decoupling network avoids a direct interaction of the disturbance
with the voltage supply, and the clock generator. The IC’s clock
input pin is subject to the noise injection.

Fig. 1. Example A. Transient DPI test setup for injection at the IC’s clock
input pin.

In particular, the transient noise generator is assumed as an
ideal Thévenin voltage source with a 50-Ω series impedance and
the pulses 3a and 3b described in the standard ISO 7637-2:2011
[13] are injected starting from 100 μs, to allow the IC to operate
in steady state before being subjected to the external noise. The
time-domain simulations have been performed with the ADS1

circuit simulator in the range [0–700] μs.
In this example, it was assumed that the DUT passes the

transient DPI test if the following conditions hold:
⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

the high-level output voltage must be in the range
[3.84, max(Q1 , Q2) + 0.5] V

the low-level output voltage must be in the range
[min(Q1 , Q2) − 0.5, 0.33] V

the variation of the supply current follows [14]
| Isupply

Inominal
| < 10

(4)

where Inominal is the nominal value of the supply current Isupply

(without noise injection). The values 3.84 V and 0.33 V are cho-
sen based on the technology used for the IC. External CMOS
devices must be able to determine whether the output is at a
high or a low level; while the values max(Q1 , Q2) + 0.5 and
min(Q1 , Q2) − 0.5 are case-specific: The maximum output cur-
rent is obtained in these conditions and excessive current pro-
duction can damage the circuit.

In this example, the behavior of the DUT is well defined and
does not change over time: the supply current is (predominantly)
constant and the outputs Q1 and Q2 of the digital counter are
periodic signals with frequency equal to the half and a quarter of
the clock frequency, respectively. Furthermore, we have chosen
not to adopt EMC aware strategies during the design phase of
the digital counter. So, it is to be expected that the injected
noise will have a clear impact on Q1 , Q2 , and Isupply. However,
it is not possible to predict upfront its effect (what will be the
value of the signals under study when noise is injected in the
DUT); no prior knowledge on the anomalies is available. In
this setting, unsupervised AD techniques can be useful, since
they do not require any additional information besides the raw
data. Hence, a suitable machine learning model is applied on

1Advanced design system, Keysight Technologies, Santa Rosa, CA, USA.
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a dataset (possibly) containing errors where it discriminates
between instances belonging to the normal class and potential
errors.

1) Raw Data Segmentation: Since the output of the DUT is
a 700-μs-long time series, it is first necessary to process this
data, as described in Section II-A, in order to represent it in a
more suitable format for AD techniques. The first 40 μs of the
time series containing the IC transient behavior are not used
for training, since the noise is injected once the IC operates at
steady state for this susceptibility test, and the noise injection
time is known (100 μs). When this would not be the case, exist-
ing techniques [15] can be adopted to automatically detect and
remove the transient behavior of a circuit from the training data,
rather than manually doing so. The use of a sliding window
approach to segment the signal is also justified by the fact that
the effect of the noise injected on the circuit will affect a group
of successive observations (a collective anomaly) rather than a
single observation (a point anomaly). Therefore, the length of
the sliding window is an important parameter and it should be
chosen according to the interval length of interest to look for
anomalies. Since it is not known a priori which length is the
optimal one in this case, it is convenient to extract partially over-
lapping segments rather than completely disjoint ones. For this
application example, the window length is chosen as the inverse
of the clock frequency and the segments are 90% overlapping.

2) Feature Vector Representation: After the segmentation
phase, relevant features are extracted from each segment. This
is done in a computational efficient way via the distributed
and parallel tsfresh library [16]. The following features are ex-
tracted from each segment (naming reflects the tsfresh standard):
abs_energy, kurtosis, skewness, maximum, minimum, mean, me-
dian, mean_abs_change, mean_change,andstandard_deviation.

Note that in more complicated settings, standard features do
not suffice and more elaborate feature engineering is needed, as
shown in Section III-B. In general, since the feature extraction
step is blind to the problem at hand, one or more features could
be irrelevant and discarded at a later stage to improve computa-
tional efficiency. An overview on possible strategies for feature
selection (applicable in both supervised and unsupervised ap-
proaches) can be found in [17].

3) Model Building: A simple yet powerful unsupervised
technique applicable to a dataset of limited size is the k-NN
approach [9]. This technique makes the assumption that the
features extracted from normal observations lie in high-density
areas within the feature space, whereas those that are extracted
from anomalous segments are far from these dense areas. In this
approach, the vectors of extracted features representing each
segment are seen as data points in an M-dimensional space,
where distances between points can be computed (e.g., via Eu-
clidean distance). In this space, it is possible to apply the NN
algorithm to assign an anomaly score to each segment. Specif-
ically, the score is the mean distance of every data point to its
K nearest neighbors, where K is a hyperparameter that can
be tuned according to the properties of the data and expected
anomalies. If K is too small, e.g., 1 or 2, only isolated anoma-
lies can be detected, since every point that has at least one close
neighbor will get a low score. If K is too high, an isolated small

cluster of normal observations might be considered anomalous.
In this example, since the data are very regular and no different
clusters of behaviors are expected, setting K = 30 (a sufficiently
high value) is a reasonable choice.

4) Model Evaluation: Given that no labels are available, the
model predictions are evaluated in those regions that are iden-
tified as anomalous, comparing the results obtained with the
failure criteria defined in (4).

Fig. 2 shows the results for Q1 , Q2 , and Isupply, when 75-V
noise pulses are injected into the clock input pin. In this example,
the training data consists of 3371 samples, where each sample
corresponds to a subsequence extracted with the sliding window
approach. For visualization purposes, only a short time interval
of data where two anomalies occur is shown. The upper plots
show the raw signal waveform, whereas the predicted anomaly
scores are shown in the lower plots as overlapping red regions
(each region has a length equal to the window length chosen for
the segmentation step). The orange bars in the upper plots show
the valid range for the outputs as defined in (4). As shown in the
plots, higher scores are assigned to regions containing deviant
behavior, such as over- or under-shoots. Note that also smaller
disturbances are assigned a score higher than the rest, even
though the values are still within the valid range. For example,
despite that Isupply in Fig. 2 is still in the valid range defined
in (4), two evident undershoots are present in the data and are
successfully identified by the model. This is especially helpful
if no specific failure criteria are available or when the user is
interested in retrieving any possible disturbance (either critical
or not).

Since the scores computed by the chosen AD method are
real numbers of arbitrary magnitude, rather than a probability
or binary value (0 for normal, or 1 for anomaly), the following
strategies can be used to classify each segment: either a threshold
τ can be chosen as the minimum score above which a segment
will be considered anomalous or, if the number of expected
anomalies N is known a priori, the segments with the N highest
scores can be flagged as anomalous. In the former case, the value
of τ can be optimized in the postprocessing step. Fig. 3 shows the
number of detected anomalies during a transient DPI test with
respect to the value of τ . A suitable threshold can be chosen
to detect all (and only) the critical errors or to include other
disturbances as well.

The proposed technique was applied to six transient DPI test
scenarios depending on the following:

1) the noise injection point: clock, Q1 , Q2 , Isupply;
2) the noise waveform (3a or 3b); and
3) the noise amplitude: [20, 40, 75, 112] V;

for a total of 16 raw output signals. By choosing τ , as explained
above, the errors defined by the failure criteria (4) have been
successfully identified in all cases.

B. SENT-RI 130 Tests—Supervised AD

A test chip provided by Melexis2 is considered as DUT for a
broadband EMC test, namely the RI 130 test [3]. As shown in

2Melexis Technologies N.V., Tessenderlo 3980, Belgium.
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Fig. 2. Example A. Extract of the results of the AD model on Q1 (top), Q2 (middle), and Isupply (bottom) during a transient DPI test with noise (waveform 3b)
of 75-V amplitude injected into the clock input pin. For each signal, the raw output waveform is shown on top with the anomaly score shown in red below. Regions
of valid behavior according to predefined failure criteria are shown on top of the raw output signal as orange bars.

Fig. 3. Example A. How the number of detected anomalies (y-axis) change
by varying the threshold τ (x-axis) for Q1 , Q2 , and Isupply for a transient
DPI test with noise (waveform 3b) of 75-V amplitude injected into the clock
input pin.

Fig. 4, the test bench itself consists of a coupling fixture residing
on a large ground plate. In slot A of the coupling test fixture,
an aggressor and a single (victim) wire of the wire harness are
placed. The other wires lay at least 200 mm away from the cou-
pling test fixture in order to avoid direct field coupling with the
aggressor wire. Next, a load simulator, commonly referred to
as load box, is connected to the DUT via the wire harness. The
transient generator can be operated in four modes, depending
on its settings [3]. During the EMC test, the data are transmitted
by the DUT via the Single Edge Nibble Transmission for Auto-
motive Applications (SENT) protocol [18] and the information
received from the DUT is checked for errors via dedicated hard-
ware. According to the SENT standard [18], a susceptibility test

Fig. 4. Example B. Default RI 130 test setup [3], where 1 = DUT, 2a = DUT
circuit wire to be tested, 2b = DUT wire harness, 3 = load box, 4 = artificial
network, 5 = power supply, 6 = automotive battery, 7 = DUT monitor, 8 =
coupling test fixture, 9 = transient generator, 10 = ground plane, and 11 = test
point.

is considered failed if any of the following criteria is met:
⎧
⎨
⎩

More than three erroneous messages out of
any hundred consecutive SENT messages;
More than two successive erroneous SENT messages.

(5)

Now, six different RI 130 susceptibility tests have been per-
formed on the same DUT, where the settings used are described
in Table I. Specifically, A, B, and C are the available slots in the
coupling test fixture in Fig. 4 and PULSE and MODE represent
the transient application mode, as described in [3].
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TABLE I
EXAMPLE B. OVERVIEW OF THE PERFORMED RI 130 TESTS

Fig. 5. Example B. Comparison between the standard hardware-based detec-
tion system (left) and the proposed machine learning driven approach (right).

Each test is 100 s long and the sampling rate frequency is
1 MHz, which results in 108 measurements per test. Table I
also shows the total number of SENT messages and errors per
test; the typical length of a message is between 1090 and 1100
data points. The imbalance is always <1%. Fig. 5 illustrates the
proposed machine learning approach in comparison with the
standard hardware-based one. The AD model operates directly
on the raw output SENT signal and the corresponding labels (an-
notations of the errors), whereas the standard approach employs
dedicated hardware to decode the output and check it for errors
(this is done via a 4-b checksum test [18]). Once the AD model
is trained on historical data, it is able to generate predictions on
new (i.e., previously unseen) tests and detect errors.

1) Segmentation and Feature Extraction: The feature ex-
traction step described in Section III-A2 is also applied in this
case, but the raw output signal is now split into individual SENT
messages, rather than using a sliding window mechanism. Next,
the “standard” features listed in Section II-B are extracted to-
gether with the following additional features:

1) first_location_of_maximum,
last_location_of_maximum, absolute_sum_of_changes,
first_location_of_minimum, last_location_of_minimum,

Fig. 6. Example B. Comparison between a SENT message containing an error
(top, in red) and one normal (error-free, bottom, in blue) during an RI 130 test.

pct_of_reoccurring_datapoints_to_all,
binned_entropy, sum_of_reoccurring_data_points,
sum_of_reoccurring_values, sum_values, number_peaks;

2) maximum, minimum, and mean length of the intervals
where the signal is HIGH and LOW (named with prefix
high_low_stats);

3) length of the calibration and pause pulse.
Note that these features were chosen due to their potential

relevance, considering the specific characteristics of the SENT
encoding/decoding protocol.

2) Model Building: For this example, unsupervised tech-
niques struggle to achieve good performance given the data
characteristics, namely the very high data imbalance, the com-
plexity of the data, and the subtlety of the errors. Indeed, in
this case, it is not possible to visually identify the effect on
the injected noise on the transmitted message as for the IC in
Section III-A. As an example, Fig. 6 shows a comparison be-
tween a message with (top) and without (bottom) errors. The
two messages have very similar shapes, and no clear disturbance
or deviation (e.g., overshoot, undershoot) can be visually appre-
ciated in either. Thus, leveraging the availability of labeled data,
a supervised approach is preferred. Specifically, an ensemble
method is used to model the data and predict anomalies. Ensem-
ble methods are machine learning models where the predictions
of several base models (also referred to as weak learners) are
combined to form the final prediction. Ensemble methods have
been proven to outperform basic classifiers in a wide variety
of tasks and domains [19] and can be classified into Bagging,
Boosting, and Stacking.

Gradient boosting [10] is a boosting technique that sequen-
tially minimizes a loss function (e.g., for binary classification
tasks, a logistic regression loss) by training at each round r a
weak learner on the pseudoresiduals from the previous round
(i.e., the difference between the predictions Dr−1(X) of the
ensemble on the training data X up to round r − 1 and the true
labels y) [10]. It can be shown that the residuals y − D(X)
correspond to the negative gradients of the loss function w.r.t.
D(X). Therefore, the algorithm is in its essence a gradient
descent algorithm. In each round, the gradients are multiplied
(boosted) by weights to let the model focus on those samples
who were misclassified at the previous rounds, and therefore,
are harder to classify.

Usually, decision trees [20] are used as weak learners. Indi-
vidual fully grown decision trees are very unstable, in the sense
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TABLE II
EXAMPLE B. CROSS-VALIDATION RESULTS FROM THE GRID SEARCH

that they tend to overfit the training data. Boosting weak (shal-
low) trees can instead avoid overfitting and drastically improve
the performance. All the tests performed in this paper use the
parallel and efficient implementation of gradient boosted trees
from XGBoost [21]. Finally, an advantage of tree-based ensem-
bles is the built-in feature selection: when training the model, the
most relevant features are chosen at each split in the nodes of the
tree. Therefore, the model automatically assigns an importance
to the features, based on their relevance: the features whose
importance is very low can be discarded to improve the compu-
tational efficiency. An analysis on the features importance for
this case is presented in Section III-B3.

a) Hyperparameters tuning: As introduced earlier, super-
vised AD models learn a decision boundary on the training set
and predictions can be generated by using such boundary to
classify test data. However, using a single RI 130 test out of
six as validation set would give biased results, since the model
hyperparameters would be tuned to give the best performance
only on such data. Therefore, to get a better estimate on the real
generalization performance of the classifier, i.e., how the clas-
sifier would perform with new data, the model is evaluated in
a leave-one-test-out cross-validation loop: in turn, each RI 130
test (referred to as fold in a cross-validation scenario) is used as
validation set and the remaining five folds are used as training
set. Note that this implies that six different models are trained
on different subsets of the complete data. Each model is then
evaluated on the held-out fold, which corresponds to the single
RI 130 test not used in the training data. Hence, the amount
of messages in the training and validation set used for every
model can be directly derived from Table I. Finally, the results
of the individual models are then averaged to obtain the final per-
formance score. The proposed cross-validation technique also
allows for the comparison between models and thus the opti-
mization of the hyperparameters. The following parameters of
gradient boosted trees can be tuned to improve performance:

1) max depth (MD): the maximum depth of the trees at
each round;

2) min child weight (MCW): the minimum weight in each
leaf node;

3) learning rate (LR): the learning rate used for gradient
descent;

4) colsample by level (CBL): the fraction of features sam-
pled at each split in the trees.

Note that the hyperparameters control how conservative the
model is and its convergence. The combination of shallow trees
(max depth of 3 to 5) with many boosting rounds usually results
in models that generalize well.

Fig. 7. Example B. Learning process for the model evaluated on Test1. Train-
ing and test PR-AUC are plotted versus the epochs (on a logarithmic scale).

TABLE III
EXAMPLE B. PR-AUC VALUE FOR THE BEST MODEL ON EACH TEST

Since the output of the model is expressed in terms of normal-
ized probabilities, a threshold ε ∈ [0, 1] must be defined to dis-
criminate between errors and nonerrors. However, a threshold-
independent metric is chosen for the model evaluation and a
discussion on the threshold choice is given in Section III-B3.
Considering the strong data imbalance shown in Table I, the
PR-AUC described in Section II-D is chosen as metric. The
optimal values of the hyperparameters are found with a grid
search. For each parameter, a finite set of possible values is
defined and a model is built for each possible combination of
values of different parameters (for each fold). The setting with
the best final result is selected. The grid search is performed
with the following values for each parameter.

1) CBL ∈ {0.25, 0.5, 1}.
2) LR ∈ {0.01, 0.1, 0.3}.
3) MD ∈ {3, 5, 10}.
4) MCW ∈ {3, 5, 7, 10}.
With these sets, the number of possible combinations is 108.

Another important parameter to be set is the number of boosting
rounds (or epochs), as discussed in the following.

3) Evaluation: Fig. 7 shows the learning process for the
model evaluated on Test 1 (and trained on all the other RI 130
tests, i.e., Tests 2–5) during 1500 epochs. The x-axis represents
the number of boosting rounds (epochs) on a logarithmic scale
and the y-axis the PR-AUC. As the plot shows, most of the
learning happens in the initial boosting rounds when both train
and test performances are increasing. Around 500 epochs (indi-
cated by the orange vertical line), the test performance reaches
a plateau while the train performance keeps on increasing; the
learning process is stopped to avoid overfitting. A similar be-
havior can be observed for the other models as well; hence, the
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Fig. 8. Example B. Probabilities predicted by the AD model for Test 6. Actual errors are marked with a red cross, whereas messages not containing errors are
marked as green dots.

number of epochs is fixed at 500. The results of the grid-search
process described above are summarized in Table II. Note that
the PR-AUC value shown is the cross-validated performance
across all tests. For brevity, the table is sorted by the PR-AUC
score (in ascending order) and only shows the two worst and
two best combinations out of all the possible ones. The closer
the PR-AUC score is to unity, the higher the model capability
in correctly detecting errors.

Table III shows a breakdown of the results for each test file
using the best parameters. As shown in the results, despite the
strong data imbalance, the model is able to detect most errors
with high precision. Fig. 8 shows the predicted probabilities for
Test 6, where messages without errors are marked as green dots,
and errors as red crosses. The x-axis represents the number of the
message, whereas the y-axis represents the probability of such
message being an anomaly, as predicted by the model. As the
plot shows, the model correctly assigns probabilities close to 0 to
most of the normal messages (true negatives), and probabilities
close to 1 to most of the actual errors (true positives). There
are some exceptions: either true errors whose probability is
very low (false negatives), or normal messages whose assigned
probability is high (false positives). By setting the threshold τ
for the class decision (1 if p > τ else 0) of the probabilities to the
standard value of 0.5, precision and recall are 87.4% and 77.6%,
respectively. However, depending on the desired outcome of the
detection model (whether more importance is given to avoiding
false positives, and therefore, to high precision, or to retrieving
all errors, i.e., high recall), a different threshold can be chosen.
Clearly there is a tradeoff between precision and recall, and
the model can be tuned to favor one or the other according to
case-by-case needs.

Finally, it is possible to extract insights on how the model
generates its predictions by looking at the importance of each
feature. This reflects how relevant/useful a feature is for the
model in identifying a message as an error. Hence, the proposed
model is able not only to detect the errors, but also to give in-
sight on the signal behaviors that are more likely to cause an
error in the DUT. This knowledge can help experts to evaluate
the effect of different noise types on the DUT and individu-
ate possible design problems. Fig. 9 shows the top ten fea-
tures according to their importance, computed by retraining the
model on the entire data (six tests). The score for each feature

Fig. 9. Example B. Features Importance (gain score) extracted from the gra-
dient boosting classifier trained on the full dataset consisting of six RI 130 tests.
Note that the x-axis is represented in a logarithmic scale.

is computed as the average gain (i.e., improvement in accuracy)
caused by such feature when it is used in branches of trees.
As expected, only a few features are relevant for the problem
(indeed, the feature extraction step is blind to the problem; there-
fore, potentially irrelevant features are also extracted). However,
both standard (e.g., minimum, last_location_of_minimum) and
ad hoc (e.g., high_low_stats__attr_max_low, high_low_stats__
attr_min_low) extracted features appear between the top ten and
contribute the most to the model predictions.

Out of the six tests, three failed and three passed according
to the criteria defined in (5). The proposed software-based ap-
proach, calibrated to have precision equal to 0.947 by choosing
a threshold of 0.75, successfully classified five out of six tests
as passed or failed. One of the failed tests was not classified as
such because of the missed detection of some errors (indeed,
the recall with this threshold is 67%). However, the advantage
of a high confidence is that the model is very reliable in its
error detection. Specifically, the probability P that a test ac-
tually fails when is classified as failed by the model in case
exactly N errors [where N ≥ 4 according to the first criteria in
(5)] out of hundred consecutive messages are detected can be
computed as

PN =
∑

K∈{4,...,N }

(
N

K

)
precisionK · (1 − precision)N −K

(6)
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TABLE IV
EXAMPLE B. COMPUTATIONAL TIMES OF THE PROPOSED AD TECHNIQUE

where N is the maximum number of detected errors out of hun-
dred consecutive messages. In the worst-case scenario, when
a test fails because only four out of hundred consecutive mes-
sages are detected as error, by (6) we have P4 ≈ 80.4%. Note
that the corresponding probability for N = 5 and N = 6 rises
up to ≈96.2% and ≈98%, respectively. Similar considerations
hold for the other failure criteria in (5).

Finally, Table IV gives an estimation of the computational
time needed for the error detection via the adopted AD tech-
nique. In particular, the computational times shown correspond
to each phase of the proposed AD technique: feature extraction,
training, and prediction on a new test. Despite the large amount
of data, the training phase only takes a few minutes, whereas
detecting anomalies on a full new dataset (once the model is
trained) is almost real time. Note that, during evaluation, the
feature extraction step is able to process a complete RI 130
test (around 91 000 messages, or ∼2 GB of raw text data) in
less than two minutes, leveraging the parallelization introduced
by tsfresh. All tests were performed using Python 2.7 on a ma-
chine with the following hardware: 12 CPU(s) Intel(R) Xeon(R)
CPU E5-2620 v3 @ 2.40 GHz with 64 GB RAM. These results
show that the proposed method is accurate and computation-
ally efficient, making this approach competitive with existing,
expensive hardware-based detection techniques.

IV. CONCLUSION

In this paper, we investigated the applicability and perfor-
mance of two AD techniques for automatic error detection in
transient susceptibility tests with two relevant application exam-
ples, one simulation- and the other measurement-based. In both
applications, the techniques, one based on k-NN (in an unsu-
pervised scenario, where no labels are known a priori) and the
other on gradient boosting (in a supervised scenario, where la-
bels are available on historical data) obtained successful results,
detecting most of the errors with high confidence. Moreover, the
proposed techniques are computationally efficient: on modern
hardware, the processing and training phase takes a few minutes,
whereas detections on new data are basically real time. These
findings demonstrate the potential of the application of AD
techniques for automatic error detection in transient suscepti-
bility tests. Since the proposed approach is completely software
based, future work will address the challenge of automating the
diagnosis of compliance with EMC standards directly during
the design phase (e.g., by simulating a susceptibility test on a

software model of the IC), before the realization and testing of
prototypes, leading to a considerable reduction of production
time and cost.
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