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Abstract
Measurements in 2D or 3D spaces are ubiquitous among many fields of science and engineering. Often, data samples are 
gathered via autonomous robots or drones. The path through the measurement space and the location of the samples is tra-
ditionally determined upfront using a one-shot design of experiments. However, in certain cases, a sequential approach is 
preferred. For example, when dealing with a limited sampling budget or when a quick low-resolution overview is desired 
followed by a steady uniform increase in sampling density, instead of a slow high-resolution one-shot sampling. State-of-
the-art sequential design of experiment methods are point-based and are often used to set up experiments both in virtual 
(simulation) as well as real-world (measurement) environments. In contrast to virtual experimentation, physical measure-
ments require movement of a sensor probe through the measurement space. In these cases, the algorithm not only needs to 
optimize the sample locations and order but also the path to be traversed by sampling points along measurement lines. In this 
work, a sequential line-based sampling method is proposed which aims to gradually increase the sampling density across the 
entire measurement space while minimizing the overall path length. The algorithm is illustrated on a 2D and 3D unit space 
as well as a complex 3D space and the effectiveness is validated on an engineering measurement use-case. A computer code 
implementation of the algorithm is provided as an open-source toolbox.

Keywords Line-based sampling · Sequential design · Design of experiments · Area coverage · Automated measurements · 
Surrogate modeling

1 Introduction

Many fields of science and engineering rely on measure-
ments in 2D or 3D spaces to capture and map specific values 
of interest. The measurements are typically performed using 
a measurement device such as an Unmanned Aerial Vehicle 
(UAV), Unmanned Ground Vehicle (UGV), or robotic arm. 
Example applications include fire detection and monitoring 
[14], cartography [15], vegetation monitoring [3], agricul-
tural field mapping [32], 3D mapping [29], electro-magnetic 
compatibility (EMC) testing [12], etc.

The location and order of measurements in physical and 
simulation experiments are determined using Design of 
Experiments (DoE) methods [27]. In this work, we consider 

computer-aided DoE. The primary focus of computer-aided 
DoE is on the space-filling aspect of DoE to cover the entire 
region [25]. The goal of space-filling methods is to evenly 
distribute the information gathering across the entire meas-
urement space. In literature, this is known as exploration 
of the measurement space. Traditionally, DoE methods are 
one-shot approaches that determine all sample locations 
upfront. Their downside is the risk of selecting too few data 
points leading to undersampling (incomplete information) 
or selecting too much data points leading to oversampling 
(increased measurement cost), which is both undesired.

The number of sample points that can be gathered and 
the path length to be traversed can also be limited due to 
battery drainage or mechanical failure. Mechanical failures 
are common [6, 26] when the measurement devices work in 
hazardous conditions such as in nuclear radiation measure-
ments [19]. Finally, in some situations, such as fire detection 
and monitoring [14], it is desirable to first get a quick general 
low-resolution overview of the measurement space before 
initiating more detailed and time-consuming high-resolution 

 * Tom Van Steenkiste 
 tomd.vansteenkiste@ugent.be

1 Department of Information Technology, Ghent University-
imec, IDLab, Technologiepark-Zwijnaarde 15, 9052 Gent, 
Belgium

http://orcid.org/0000-0002-3842-3151
http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-018-0614-6&domain=pdf


538 Engineering with Computers (2019) 35:537–550

1 3

measurements. As a solution, sequential DoE strategies have 
been developed to iteratively extend the sample set during 
the measurement process.

In sequential DoE, subsequent batches of new sample 
locations are determined based on previously collected 
samples. These previous samples can be collected via any 
sampling scheme. A key advantage of this approach is that 
the total amount of samples does not need to be prespeci-
fied, as it can grow during the experimentation. Termination 
criteria can be based on physical constraints such as battery 
status, mechanical failure, or time duration. Alternatively, 
a measure of information density can be constructed if the 
samples are used to build a surrogate model [17]. An error 
measure of the surrogate model can be calculated using 
cross validation [18].

State-of-the-art sequential DoE strategies are focused on 
computer simulations. In virtual experimentation, jumping 
through the design space is often without additional cost. 
Real measurements, however, are associated with physical 
movements of a sensor probe through a measurement space 
which comes at a significant cost. This movement should 
also be optimized. Instead of sampling individual points, 
line-based sequential sampling methods are needed that gen-
erate optimal sampling lines along which sampling points 
are chosen. In this case, the path and sample locations are 
optimized and the DoE consists of 2 parts:

– a coverage path planning algorithm to ensure that the 
path of given length l covers the area as evenly spread as 
possible (i.e., space-filling).

– a path sampling algorithm to determine where to perform 
N measurements along the selected path.

In this work, a combined coverage path and path sampling 
algorithm is presented to gradually increase the sampling 
density over the entire measurement space called the 

Adaptive Line-Based Sampling TRajectOrieS (ALBA-
TROS) algorithm. The algorithm combines point-based 
sampling methods from DoE with area coverage strategies 
to generate sampling trajectories. These sampling trajecto-
ries constitute a path that is represented as a sequence of line 
segments. While the line segments are traversed, measure-
ments are performed and the sampling density is gradually 
increased over the entire measurement space. This ensures 
that at each time step, a quasi-uniform distribution of the 
information is obtained.

This paper is organized as follows. In Sect. 2, related 
work is discussed. Then, in Sect. 3, the ALBATROS algo-
rithm is presented. In Sect. 4, the experimental setup is 
discussed with the evaluation criteria, and in Sect. 5, the 
experiments and results are presented. Finally, conclusions 
are drawn in Sect. 6.

2  Related work

Design of experiments encompasses all methods used to 
adequately gather information in a measurement space. In 
this work, we focus on computer-aided design of experi-
ments. These strategies can either be point-based, in which 
the information consists of samples with a specific location 
or they can be line-based in which data samples are collected 
along line segments in the measurement space, and hence, 
the order of these samples is determined by these lines. Fig-
ure 1 demonstrates a point-based sampling scheme and a 
line-based sampling scheme. Note that in the end, the sample 
locations represented by the green dots are the same. The 
sampling order, however, does not necessarily have to be the 
same. For the point-based sampling, the measurements can 
jump through the design space, whereas for the line-based 
sampling, the order follows a strict line pattern.

Fig. 1  Two different sampling 
methods. a Point-based sam-
pling. b Line-based sampling
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Traditionally, computer-aided DoE determines the entire 
data collection upfront in one shot. A more advanced option 
is to use sequential design in which the data collection strat-
egy is iteratively extended. This strategy can still be com-
puted upfront but can also be stopped early during the data 
gathering process based on error thresholds or due to other 
stopping criteria without significantly affecting the sampling 
distribution.

One can classify all computer-aided DoE strategies in 
four classes, see Table 1.

2.1  Point‑based sampling

Point-based sampling methods can be categorized into one-
shot methods and sequential methods:

– Examples of one-shot point-based DoE methods include 
factorial designs [28] and latin hypercube designs 
(LHDs) [33]. These algorithms focus on space-filling-
ness and covering the entire space as evenly as possible. 
However, one-shot point-based DoE methods require a 
fixed number of samples (N) to be defined upfront. If N 
is chosen inadequately, it can lead to oversampling or 
undersampling. Furthermore, the measurement sensor 
can be influenced by external factors that hamper data 
collection, such as mechanical failures [6, 26], unexpect-
edly altering the value of N during the measurement pro-
cess.

– On the other hand, sequential point-based DoE meth-
ods from the active learning domain [7] transform the 
sampling procedure into an iterative process [11, 17]. 
An example of a sequential DoE method is maximin 
sampling [23] which determines the location of addi-
tional sample points based on the maximin criterion (see 
Sect. 3.3 for details).

2.2  Line‑based sampling

A different type of sampling is line-based sampling. Instead 
of determining individual sampling points, a sampling tra-
jectory is determined along which samples are taken. These 
line-based DoE methods are known in the literature as cov-
erage path planning algorithms and the additional step of 

determining the sampling points along the path is often 
omitted. Similar to the point-based DoE methods, the line-
based methods focus on space-fillingness of the lines. Again, 
these sampling methods can be categorized into one-shot 
methods and sequential methods:

– An example of a one-shot coverage path algorithm in a 
trapezoidal space is the Boustrophedon path [8]. When 
the measurement space is not a trapezoidal, e.g. due 
to obstacles, more advanced coverage algorithms are 
used, such as the Boustrophedon cellular decomposition 
method [8]. Other algorithms incorporate energy expend-
iture and time duration into the coverage path planning 
[5]. Another type of space-filling curve is the Hilbert 
curve [21]. Such space-filling curves have, for example, 
been proposed as paths for mine-clearing robots [30, 31]. 
Hilbert curves are fully specified by their order p. For a 
detailed description of the mathematics of Hilbert curves 
and properties of other space-filling curves, see [2, 9, 16].

– For sequential coverage path and path sampling, no algo-
rithms focused on space-filling design exist. The ALBA-
TROS algorithm presented in Sect. 3 aims to fill this gap.

3  Adaptive line‑based sampling trajectories 
(ALBATROS)

3.1  Overview

The ALBATROS algorithm is a sequential line-based sam-
pling algorithm. It is designed to gradually and sequentially 
extend the set of samples across the entire measurement 
space, taking into account the cost of moving the measure-
ment sensor. The algorithm requires a (small) initial set of 
samples to be chosen before the sequential loop begins. 
These first samples can be determined by any classic DoE 
strategy. Once these initial samples have been gathered, the 
ALBATROS sequential loop, consisting of three phases, 
starts, as shown in Fig. 2.

The ALBATROS sequential loop starts with defin-
ing a new waypoint, which is the end-point of one com-
plete path extension step. It is chosen at a location where 
the least amount of information has previously been col-
lected. In the second step, the algorithm computes an effi-
cient path towards that waypoint taking into account: (1) 
that movements are expensive and (2) that the device can 
gather extra samples along the way. Finally, once a path has 
been selected, the algorithm selects samples along the path. 
Depending on information density criteria, the algorithm 
can either stop at this point or it can continue the sequential 
loop by choosing additional waypoints.

Each of the four phases of the ALBATROS algorithm is 
now discussed in detail in the following parts. In the final 

Table 1  Overview of computer-aided DoE strategies

Point-based Line-based

One-shot Factorial designs [28]
Latin hypercube designs [33]

Boustrophedon path [8]
Hilbert curve [21]

Sequential Maximin criterion [23]
LOLA-Voronoi [10]

ALBATROS
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part of this section, the complete algorithm is shown in pseu-
docode with a detailed step-by-step description.

3.2  Phase 0: gather initial samples

The initial phase of the ALBATROS algorithm is the gath-
ering of initial data samples. In the most basic form, this 
consists of at least two samples that are collected along a 
one-shot path that departs from the starting position of the 
measurement sensor.

However, in certain settings, the set of initial samples 
can be considerably larger. Consider, for example, a meas-
urement device with a limited battery capacity. Given the 
design specifications, it is certain that the battery will last 
at least a specified amount of time. After that, the battery 
can fail at any moment. In such cases, it is useful to follow 
an optimal one-shot path (as discussed in Sect. 2) when the 
battery life is still guaranteed and move over to a sequential 

sampling strategy when the remaining battery life becomes 
uncertain.

The typical full one-shot path in a trapezoid measure-
ment space consists of back and forward traversals on a grid 
known as a Boustrophedon path [8], as shown in Fig. 3a. 
Another possible initial path is the space-filling Hilbert 
curve [21], as shown in Fig. 3b.

The goal of these initial paths is to cover the measurement 
space as evenly as possible while minimizing the overall 
path length. Other initial paths are also possible. Depending 
on the use-case, secondary requirements are also important 
(e.g. minimizing the amount of turns in the path, etc.). In 
such a case, the Boustrophedon path is preferred over the 
Hilbert curve.

After the initial path is determined, sample locations are 
chosen along the path. In the most basic form, measurements 
are taken at fixed intervals. A more advanced method is to 
optimize their position along the coverage path. The density 
of the measurements can vary and has to be chosen by the 
operator. For a given density, the Boustrophedon path is the 
optimal shortest path to spread information across the meas-
urement space [22]. The measurement device moves along 
the path and takes samples along equidistant steps.

3.3  Phase 1: defining new waypoint

After the initial samples have been gathered, the sequential 
sampling loop of the ALBATROS algorithm moves into 
phase 1. The first step in this loop is to define the new way-
point. This point should be chosen to maximally increase the 
amount of information in the measurement space. Hence, 
this point should be as far away as possible from any other 
point already gathered as initial samples or during previ-
ous iterations of the loop. This requirement can be formally 
defined as the maximin criterion � over the input space  

Fig. 2  Four phases of the ALBATROS algorithm

Fig. 3  Examples of initial paths. 
a Boustrophedon path. b Hilbert 
curve of order 3
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[23], where X is the set of already gathered samples and �i 
is the candidate point:

If two or more candidate points result in the same maxi-
min score, then the mean distance to all other points is used 
to break ties.

To determine the point in the measurement space with 
the largest maximin score, a bounded Voronoi diagram is 
constructed which will also be used in later steps of the 
algorithm. A Voronoi diagram of a set of points X consists 
of edges E and vertices V. The edges represent equidistant 
locations between the two nearest points. Each point is sur-
rounded by multiple edges, composing a Voronoi cell. For 
details on the construction of a Voronoi diagram, the reader 
is referred to [1]. This diagram limits the search space for the 
largest maximin score to the vertices of the Voronoi diagram 
as these points are furthest away from any center point. This 
is illustrated in Fig. 4, where the green circles represent the 
Voronoi centers, the red crosses represent the Voronoi verti-
ces and the red diamond represents the maximin point. The 
maximin point is determined as the vertex with the largest 
minimal distance to one of the Voronoi centers.

3.4  Phase 2: compute path extension

In the second step of the ALBATROS loop, a path is gen-
erated from the last sampled point of the previous iteration 
(or of the initial design), to the newly determined maximin 
waypoint. This is the coverage path planning step. The 
Voronoi diagram, which has already been constructed dur-
ing the previous phase, can be re-used. When the Voronoi 
diagram is generated using all previously selected samples 

(1)� = max
�i∈

min
�j∈X

‖�i − �j‖

as cell centers, the Voronoi edges represent equidistant 
lines between the two nearest cell centers. Hence, trave-
ling on these lines optimally spreads out the information 
gathering process. The Voronoi diagram in Fig. 4 can be 
interpreted as a graph consisting of the red crosses and 
black edges that connect them. Similar strategies have 
been used in, e.g., military obstacle avoidance settings 
[24] or optimal path planning settings [4].

Once the Voronoi diagram is generated, a weighted 
graph is constructed of the Voronoi diagram with the 
Voronoi vertices as graph nodes and the edges as graph 
edges. The weights of the edges are computed using a met-
ric to balance out two conflicting goals. On the one hand, 
the path should be as short as possible. On the other hand, 
the path should visit many edges that are far away from 
previously sampled points represented as Voronoi centers. 
The weights of these edges are computed based on the 
distance of each point on the edge to the nearest Voronoi 
centers, which are on opposite sides of the edge. This can 
be interpreted as the sum of the integrals of the distance of 
each point on the edge to the Voronoi centers as shown by

where estart and estop represent the beginning and end corner 
points of the Voronoi edge, respectively, Ne represents the 
number of points nearest to that edge, �c,i represents the ith 
Voronoi center closest to the edge and �c,i,projection represents 
the orthogonal projection of that point onto the edge. In the 
2D case, Ne can either be 1 for edges on the boundaries or 
2 for the other edges. Note that this metric can easily be 
computed as the surface of the triangles set up by the points 
estart , estop and the �c,i as illustrated in Fig. 5.

With this setup, the edges having the largest weights are 
the most beneficial for the space-filling properties to sam-
ple, because these edges are furthest away from any previ-
ously selected points. To find the optimal path, the shortest 

(2)

w(e) =

Ne∑

i=1

estop

∫
estart

||� − �c,i||d�

=

Ne∑

i=1

||estop − estart|| × ||�c,i,projection − �c,i||
2
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Fig. 4  Determination of maximin point (red diamond) in Voronoi dia-
gram
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Fig. 5  ALBATROS edge weight metric
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path algorithm of Dijkstra [13] is used on the same graph 
but with the weights first converted by subtracting them 
from the maximal weight in the graph. Converting the 
weights in this way leads to a natural regularization on 
the number of hops, improving the performance of the 
algorithm.

3.5  Phase 3: determine new points along the path

In the final step, the path sampling algorithm will determine 
where the sensor should pause to take a measurement along 
the path that was determined using Dijkstra’s algorithm. 
Again, the most basic form consists of samples taken equi-
distantly. The sample interval can also change dynamically 
across multiple iterations of the sequential loop.

In the ALBATROS algorithm, a heuristic is used to deter-
mine the location of the sample points. First, the number 
of points to be selected is computed based on the length 
of the selected path and the operator-determined proposed 
interval between the samples. However, instead of select-
ing the points at that fixed distance, the points are chosen 
to be furthest away from any other point. This is achieved 
by evaluating a large number of random points along the 
predetermined path and computing the distances of these 
points to all earlier selected sample points. The point with 
the largest distance is added to the new sample queue and the 
algorithm continues selecting new points until the maximum 
amount of points has been added. When the budget has been 
depleted, the points in the queue are ordered based on their 
position along the path to be traversed.

The measurement sensor can now gather these additional 
samples. The iterative sequential loop is then repeated until 
a stopping criterion is satisfied, such as, e.g., an information 
density metric. In other cases, the sequential loop contin-
ues until other physical constraints (such as time duration, 
traveled distance, battery depletion, or mechanical failure) 
have been reached.

3.6  ALBATROS algorithm

In the previous parts, an overview was given of each of 
the separate phases of the ALBATROS algorithm. Now, 
Algorithm 1 provides an overview of the pseudocode for 
ALBATROS.

– line 1–2: Generate initial points. The measurement sen-
sor moves along the initial path and returns the measured 
samples.

– line 3: Check if a predetermined stopping criterion has 
been met. If not, the path is extended with additional 
points. If the criterion has been met, the algorithm ends.

– line 4–7: Generate a Voronoi diagram based on all sam-
ple points. Relevant variables from the Voronoi diagram 
are extracted.

– line 8–10: Determine the new waypoint and add an edge 
from the new waypoint to the closest Voronoi vertex.

– line 11–15: Edges from the current (= last) point to the 
vertices of the closest Voronoi edge are added as well. 
These added edges will allow a complete path to be 
formed.

– line 16–24: For each cell in the Voronoi diagram, the 
center point is computed. Then the influence, as deter-
mined by Equation 2, of that point to all its edges is 
added to the weights of the edges.

– line 25–28: Dijkstra solves a shortest path problem. As 
such, the weights of the weight matrix are converted to 
allow for a shortest path algorithm.

– line 29: The Dijkstra shortest path algorithm is used to 
determine an optimal path.

– line 30–33: The best points to sample along the path are 
determined and the measurement device is instructed 
where to execute the measurements. The outputs are 
added to an output array and the sampled points are 
added to the sample point array.

Algorithm 1 Adaptive Line-Based Sampling Trajectories
1: X = getInitialPoints()
2: Y = measure(X)
3: while not stoppingCriteriumMet(X,Y ) do
4: voronoiDiagram = generateBoundedVoronoiDiagram(X)
5: E = voronoiDiagram.edges
6: V = voronoiDiagram.vertices
7: C = voronoiDiagram.cells
8: xnew = getMaximinPoint(X,V )
9: xnew,closest = closest point of X to xnew

10: E = E ∪ (xnew,xnew,closest)
11: n = |X|
12: xcurrent = X(n)
13: a,b = vertices of edge in E closest to xcurrent

14: E = E ∪ (xcurrent,a)
15: E = E ∪ (xcurrent,b)
16: for all c ∈ C do
17: xc = point in center of cell c
18: for all e ∈ c do
19: xc,projection = projection of xc to edge e
20: projectionDistance = ||xc,projection − xc||
21: edgeDistance = ||estart − estop||
22: w(e) = w(e) + projectionDistance×edgeDistance

2
23: end for
24: end for
25: maxWeight = max(w)
26: for all e ∈ E do
27: w(e) = maxWeight - w(e) + 1
28: end for
29: P = Dijkstra(w,xcurrent,xnew)
30: S = samplePath(P )
31: Ynew = measure(S)
32: Y = Y ∪ Ynew

33: X = X ∪ S
34: end while
35: return Y
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4  Experimental setup

The algorithm is implemented in  MATLAB®1 using the 
Multi-Parametric Toolbox 3 [20] for computing the Voronoi 
diagram. ALBATROS is provided as an open-source toolbox 
on http://sumo.intec .ugent .be/ALBAT ROS.

Two measures are defined to test the performance of the 
algorithm on two evaluation criteria: the information gathered 
during the process has to be spread as uniformly as possible 
at each moment in time and the distance traveled l to capture 
a specific amount of information has to be minimized.

To quantify the spread of information in the measurement 
space, a concentration metric is defined in Eq. 3. The metric 
consists of the standard deviation of the d-dimensional vol-
ume Vol(C�) of the d-dimensional Voronoi cells C� induced 
by sample point �:

5  Experiments

First, the ALBATROS algorithm is benchmarked in com-
parison with other DoE methods on a 2D space and two 
3D spaces. Finally, the ALBATROS algorithm is applied to 
an engineering use-case of electro-magnetic compatibility 
testing.

5.1  2D comparison benchmark

The first experiment compares the ALBATROS sequen-
tial line-based algorithm to the three other categories from 
Sect. 2. Each of the algorithms is executed in a unit space 
 = [0, 1]2 . As the algorithms are deterministic, no repeti-
tions are required. Each time the concentration metric and 
path length l are computed for increasing subsets of gathered 
samples.

For the one-shot line-based benchmark, the Boustrophe-
don path is chosen. Along this path, samples are gathered 
equidistantly. Note that this one-shot line-based benchmark 
is a specific case of the one-shot point-based method, created 
by imposing a measurement order on the samples. Hence, 
we use this generalized experiment to represent both one-
shot categories. The one-shot samples are sampled at a fixed 
distance of 0.1 in both directions. To demonstrate a path 
extension of the one-shot design, an extra Boustrophedon 
path is appended to the end of the sampling campaign with a 

(3)

concentration =

√√√√ 1

N − 1

∑

��∈X

(
Vol(C��

) −
1

N

∑

��∈X

Vol(C��
)

)2

fixed distance of 0.05 in the opposite way. For the sequential 
point-based algorithm, the maximin algorithm is chosen.

For the sequential line-based ALBATROS algorithm, two 
different configurations are possible. In the first configura-
tion, the algorithm starts with only two initial points near 
each other, representing a cold start. In the second configura-
tion, the ALBATROS algorithm continues after an upfront 
one-shot initial design representing the start of ALBATROS 
as an addition to another sampling algorithm. In both con-
figurations, the proposed sampling distance is 0.1 as with 
the one-shot benchmark. In all benchmarks the starting point 
is [0, 0].

Figure 6 shows the initial steps of the ALBATROS algo-
rithm, starting from a Hilbert Curve Design (HCD) of order 
2. The blue lines represent the path, the black lines represent 
the Voronoi diagram, the green circles represent the previ-
ously sampled points which are now the Voronoi centers and 
the red diamonds represent the path extension. The figure 
demonstrates the ALBATROS algorithm gradually and uni-
formly increasing the sampling density. As the initial Hilbert 
curve already provides a rough outline of the measurement 
space, the ALBATROS algorithm proceeds to fill in the void 
in the middle.

The ALBATROS algorithm can also be initialized start-
ing from only two initial points. This is shown in Fig. 7. This 
figure demonstrates how the algorithm first gets a broad view 
of the space by sampling along the boundaries and then fills 
in the middle parts.

The final paths and sample positions after 256 sample 
points with each algorithm in the comparison are shown in 
Fig. 8. This demonstrates the structure in the measurements 
for the one-shot methods in Fig. 8a. Figure 8b shows how 
the sequential point-based sampling method continuously 
travels over the center of the measurement space. Finally, 
Fig. 8c, d demonstrate how the ALBATROS algorithm 
spreads out the information right from the start and avoids 
traversing over the same location multiple times.

In the following results, the ALBATROS algorithm start-
ing from two initial points will be used for further illustra-
tion of the sequential line-based sampling algorithm. For 
all benchmarks, the concentration and path length l metrics 
discussed in Sect. 4 are computed, as shown in Fig. 9.

Figure 9a shows the concentration as a function of the 
number of samples. It is clear that the sequential point-based 
design is most spread if only the number of samples are 
considered. However, it is shown in Fig. 9b that the length 
of this corresponding path is substantially higher. When this 
is taken into account, it is seen from Fig. 9c that the ALBA-
TROS sequential line-based design makes a better tradeoff 
than other approaches: the spread of measured samples is 
higher for any given path length. The one-shot design only 
provides a better spread of the data when the entire grid 1 MATLAB, The MathWorks, Inc., Natick, Massachusetts, United 

States.

http://sumo.intec.ugent.be/ALBATROS
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of exactly 11 × 11 = 121 samples is measured, which cor-
responds to a path length of 12.1.

From these graphs, the optimal working conditions for 
each of the algorithms can be derived. In case of fast move-
ments of the measurement probe or in simulations, in which 
the path length l incurred by moving through the sampling 
space does not have to be taken into account, the sequen-
tial point-based strategy is the best choice as it provides 
the maximum amount of information spread out across the 
measurement space per sample. However, if on the other 
hand moving through the sampling space is costly and if we 
have a predefined sampling budget, the one-shot sampling 
techniques outperform the others as they provide the maxi-
mum amount of information for the shortest traveling path 
at the end of the measurement campaign. However, often, 
in real-life use-cases, the sampling budget is not fixed or 
guaranteed and the end of the measurement campaign can-
not be predetermined. There are many possible reasons for 
the sampling budget to be cut short as outlined in Sect. 1. 
In such cases, the ALBATROS algorithm is the best choice 
as it efficiently collects information across the measurement 

space while simultaneously minimizing the path length. The 
ALBATROS algorithm can also be used when the required 
sampling budget for sufficient accuracy is difficult to esti-
mate. The algorithm can continue sampling while accuracy 
metrics indicate if more samples are required.

5.2  3D comparison benchmark

A similar benchmark is performed on a 3D unit space 
 = [0, 1]3 . For the one-shot line-based benchmark, a 3D 
Boustrophedon path is chosen with a sampling distance of 
0.1. Again, this path is extended in the end with a Bou-
strophedon path in the opposite direction with a sampling 
distance of 0.05. This same design is also used to represent 
the one-shot point-based benchmark. For the sequential 
line-based benchmark, the ALBATROS algorithm starting 
from two initial points is chosen with a proposed sampling 
distance of 0.1. All benchmarks have [0, 0, 0] as starting 
location. Figure 10 shows the performance metrics.

The metrics again show how the sequential point-based 
design is the most optimal when compared to the amount 

Fig. 6  ALBATROS path exten-
sion steps, starting from HCD
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of samples. However, the path length increases much faster 
than the two other designs. At 121 samples, the concentra-
tion metric drops significantly for the one-shot design as it 
has reached a 11 × 11 × 1 grid in the 3D space. However, 
when it continues building a 11 × 11 × 11 grid, the metric 
quickly rises again indicating that some points are more con-
centrated than others. The ALBATROS sequential point-
based design on the other hand, keeps the concentration of 
points low and the spread high. When the path length that 
can be traversed is unknown or uncertain, the ALBATROS 
sequential point-based design is the most optimal choice.

The ALBATROS algorithm works in any 2D or 3D con-
vex space. To demonstrate the algorithm on other shapes 
than the unit square and unit cube, a benchmark is performed 
on a 3D space determined by a Buckyball in [−1, 1]3 . The 
resulting evolution of the metrics is shown in Fig. 11. The 
metrics again show how the ALBATROS sequential line-
based design is the most optimal choice when the path length 
is unknown or uncertain. An animation of the evolution of 

the sampling path is available at https ://www.youtu be.com/
user/sumol ab.

5.3  Use‑case: electro‑magnetic compatibility 
testing

To test the algorithm on an engineering problem, an elec-
tro-magnetic compatibility (EMC) testing use-case [12] is 
considered. In this problem, a device under test (DUT) is 
scanned using a near-field (NF) scanning probe to assess the 
electro-magnetic compatibility in the x-plane and y-plane. A 
top view of the DUT is shown in Fig. 12a and consists of a 
double microstrip bend over a slot. The NF scanning system 
consists of a computer numerical control milling machine 
that was rebuilt into an NF scanning system. For a detailed 
description of the setup, see [12].

In previous experiments, a one-shot dense grid con-
sisting of 3375 scan points was collected of the magnetic 

Fig. 7  ALBATROS path exten-
sion steps, starting from two 
points
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field in the x-plane |Hx| . This dense dataset, combined with 
linear interpolation is used in this example. The resulting 
magnetic field |Hx| is shown in Fig. 12b. The measure-
ment space is not a unit square but a rectangle shape of size 
 = [0, 75] × [0, 39](cm × cm).

For the one-shot line-based and one-shot point-based 
algorithms, a Boustrophedon path is chosen with a step size 
of 5. For the sequential point-based algorithm, the maximin 
algorithm is chosen. For the sequential line-based algorithm, 
ALBATROS is used with a proposed sampling distance of 5. 
All benchmarks have the point [0, 0] as starting point. The 
resulting metrics are shown in Fig. 13. The same remarks 
and conclusions can be made as with the other examples.

To evaluate the performance of the algorithms to accurately 
represent information about the measurement space, the result-
ing sample sets are compared with the ground truth data of our 
original dense dataset. To this end, the predicted values at the 
locations of the original dense grid are determined using near-
est neighbor interpolation and nearest neighbor extrapolation. 

These predicted values ŷi are then compared to the original 
values yi in the root mean squared error (RMSE) metric in 
Fig. 14.

The RMSE metric in Fig. 14 behaves similar to the concen-
tration metric in the other figures and examples. When only 
the number of samples is important and the traversed path 
length can be ignored, the sequential point-based design is the 
best choice. When a fixed sampling budget is known before, 
the one-shot design is the best choice, as shown in Fig. 14a. 
However, when movements through the measurement space 
are expensive and the path length is unknown or uncertain, 
the ALBATROS sequential line-based design proves to be the 
best choice, as shown in Fig. 14b, as it aims to spread out the 

(4)RMSE =

√√√√ 1

N

N∑

i=1

(ŷi − yi)
2

Fig. 8  Final sample path after 
256 samples. a One-shot 
line-based and point-based sam-
pling. b Sequential point-based 
sampling. c ALBATROS sam-
pling with HCD. d ALBATROS 
sampling with two initial points
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Fig. 9  Comparison of bench-
marks in 2D unit square. a 
Concentration vs. number of 
samples. b Path length vs. num-
ber of samples. c Concentration 
vs. path length
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Fig. 10  Comparison of 
benchmarks in 3D unit cube. 
a Concentration vs. number of 
samples. b Path length vs. num-
ber of samples. c Concentration 
vs. path length
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information throughout the measurement space, leading to a 
more accurate model representation of the data, while at the 
same time minimising the traversed path length.

6  Conclusion

The Adaptive Line-Based Sampling TRajectOrieS for 
Sequential Measurements algorithm was introduced. The 
ALBATROS algorithm is a sequential line-based sampling 
algorithm designed to gradually and uniformly increase the 

sampling density across the entire measurement space. It 
consists of a combined coverage path planning algorithm and 
path sampling algorithm. Although sequential point-based 
sampling methods provide the optimal spread of information 
in terms of the number of samples, these algorithms ignore 
the incurred costs of moving the sensor through the meas-
urement space. One-shot sampling algorithms on the other 
hand optimize the path length but lack a gradual spread of 
information during the sampling process. When the sampling 
should be robust to sudden failures or when a predefined sam-
pling budget is difficult to estimate upfront, the ALBATROS 

Fig. 11  Comparison of 
benchmarks in 3D Buckyball. 
a Concentration vs. number of 
samples. b Path length vs. num-
ber of samples. c Concentration 
vs. path length
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Fig. 12  EMC testing use-case. a Device under test: bend microstrip over a slot. b Magnetic field |H
x
| of DUT
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algorithm provides a powerful sampling strategy in many 
real-life use-cases. The effectiveness of the ALBATROS 
algorithm has been demonstrated on several convex 2D and 
3D spaces as well as on a practical engineering use-case.
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