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Abstract—In communication systems, the signals of interest are
often amplitude and/or phase modulated ones. In this framework,
the baseband equivalent signals and systems representation is
usually adopted to simulate the digital parts of communication
systems in an efficient manner. This contribution extends the
applicability of such representation to RF/analog devices, leading
to a common and efficient modeling and simulation framework.
In particular, the proposed method can build half-size models
compared to existing approaches, and allows one to choose
the simulation time step according to the bandwidth of the
modulating signals rather than the carrier frequency, thereby
significantly speeding up the simulation procedure. The novel
proposed method is validated via a suitable application example.

Index Terms—Baseband modeling and simulation, modulated
signals, state-space representation, time-domain analysis.

[. INTRODUCTION

In communication systems, the signal of interest is often
modulated on a carrier with frequency f., where the bandwidth
of such modulating signal is often much smaller than f..
Nowadays, telecommunication systems are moving to higher
carrier frequencies for larger channel bandwidth. For example,
the 5G network will operate at two frequency ranges: sub 6
GHz (with the maximum channel bandwidth of 100 MHz) and
mmWave (>24 GHz, with a minimum channel bandwidth of
50 MHz and a maximum of 400 MHz). For fiber-optic commu-
nication links, the optical carrier frequency is even in the range
of 200 THz, with channel bandwidths of 100 GHz or less. The
time step for a direct simulation of these systems is mainly
determined by the carrier frequency, which indicates that
higher f. results in smaller time steps and larger computational
complexity. In this scenario, baseband equivalent signals and
systems are widely used in the simulation of communication
systems to simplify the modulation, demodulation and filtering
process [1]. The main idea is to “remove” the carrier frequency
from the (bandpass) modulated signals and from the frequency
response of the corresponding systems to efficiently process
the information. This approach is efficient and accurate when
dealing with the digital parts in a system, such as digital filters.
However, it is not straightforward to apply the technique to the
simulation of RF/analog parts (e.g. microwave filters in the
front-end circuits) to achieve efficient time-domain simulations
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A first approach to model passive photonic integrated cir-
cuits where electronic signals are modulated on optical carriers
is proposed by us in [2], [3]. It starts from the scattering
parameters of the photonic circuits under study, and derives a
baseband equivalent model in state-space form which allows to
conduct time-domain simulations in baseband regardless of the
carrier frequency. Despite being developed for optical devices,
this technique can be applied to linear and passive electronic
systems as well, since it is based on a scattering parameters
representation.

In this contribution, a novel alternative approach is pre-
sented, that is based on the Complex Vector Fitting (CVF)
algorithm, and preserves all the advantages of the previous
method [2], [3]. However, it generates more compact baseband
state-space models, indicatively half the size of the ones
obtained via [2], [3]. The paper is organized as follows.
Section II describes the direct time-domain simulation of
bandpass systems and the issue. The concept of baseband
equivalent signals and systems is introduced in Section III.
Section IV proposes the novel compact baseband modeling and
simulation technique while an application example is provided
in Section V. Conclusions are drawn in Section VI.

II. BANDPASS SIGNALS AND SYSTEMS

An amplitude and/or phase modulated signal with carrier
frequency f. can be represented as

a(t) = A(t)cos(2m fot + ¢(t)), (D

where A(t) and ¢(t) are the time-varying amplitude and phase,
respectively. Signals in the form (1) are referred to as bandpass
signals [1], since the spectrum of a(t) is centered around the
carrier frequency and, typically, its bandwidth is relatively
small compared to f..

Analogously, systems with input/output signals in the form
(1) can be called bandpass systems. For passive bandpass
microwave systems, the scattering parameters are widely used
to represent their behaviors; hence, let us assume that the scat-
tering parameters of the passive bandpass system under study
have been obtained (via either simulations or measurements)
at a discrete set of frequency values: S(f,) forr=1,..., R.
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Then, a pole-residue model can be built via the Vector Fitting
(VF) technique [4]-[6]

—~ R/" vF
5(8) = Z m + D 5 (2)
k=1 k

where s = j2rf is the Laplace variable, p}” are the
(common) poles and R,‘C/F are the corresponding residues, that
are either real or complex conjugate pairs, while D is a real
matrix. Then, the VF model (2) can be easily converted into
a time-domain state-space representation in the form
dx(t
% = AV x(t)+ BV a(t)
b(t)=C" x(t)+ D" a(t),

3

where a(t) € R™! and b(t) € R™*! are the incident and
reflected signals of the n-port bandpass system, respectively,
while z(t) € R™*! with m = nK collects the state variables.
The matrices A" , BYF , cvr s DY can be analytically
derived from (2) [7].

Time-domain simulations can be directly conducted by
solving (3) via ordinary differential equation (ODE) solvers,
where the maximum simulation time steps that can be adopted
depends on the frequency of the input signals. Given that
signals in the form (1) are considered in this contribution,
the simulation time step depends on f.: if f. is very large, the
simulation will be time consuming.

IIT. BASEBAND EQUIVALENT SIGNALS AND SYSTEMS

To address the above challenge, a baseband modeling and
simulation approach can be used to decrease the simulation
cost by adopting relatively large time steps without losing ac-
curacy [1]. The main idea is to “remove” the carrier frequency
from the bandpass signal a(t) by deriving a corresponding
baseband equivalent signal a;(t) as

ai(t) = A(t)e??®, “)
The relations between a(t) and a,(t) are
a(t) = Re(ay(t)e’*™/<"), 5)

where Re(-) represents the real part. Note that a;(t) is the
complex envelope of a(t) [1]. The relation between a(t) and
a;(t) in the frequency domain is illustrated in Fig. 1.

The baseband equivalents of bandpass systems are defined
in a similar way, as shown in Fig. 2, where S(f) is the
frequency response of the bandpass system represented by
(2) and S;(f) is its baseband equivalent. If a(t) is the port
signal of the bandpass system S(f), a;(t) can be considered
as the port signal of the baseband equivalent system S;(f)
[1]. The main advantage of adopting baseband signals and
systems for time-domain simulations is that the correspond-
ing time-domain simulations can be carried out at baseband
with relatively large time steps, and then the port signals of
bandpass systems can be analytically recovered from the port
signals of the baseband systems according to (5).
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Fig. 1. Example of the amplitude spectrum of a bandpass modulated signal
(top) and its baseband equivalent signal (bottom).
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Fig. 2. Example of the amplitude spectrum of a bandpass system (top) and
its baseband equivalent representation (bottom).

However, it is important to note that S;(f) has an asymmet-
ric frequency response with regard to the positive and negative
frequencies. As such, it represents a complex-valued system
with a complex-valued impulse response. It is impossible to
directly compute a model of S;(f) with the VF technique
that models physical systems having a symmetric frequency
response. In the next section, a novel approach to compute
stable and passive baseband models of S;(f) is presented.

IV. NOVEL MODELING APPROACH FOR BASEBAND
EQUIVALENT SYSTEMS

A. Baseband Modeling Approach

Consider the sampled bandpass scattering parameters S( f;)
for r =1,..., R. The corresponding baseband representation
Si(f;) can be obtained by shifting S(f,) towards 0 Hz by
an amount equal to the carrier frequency f. [1], as shown
in Fig. 3 where f; = f. — f.. Then, the CVF algorithm is
developed to calculate a pole-residue model of S;(f;) as

K RCVF
sl(s)zzis_kcw + DT, (6)
k=1 Py

where ngF are the (common) poles that can be either real
or complex, and R,?VF are the corresponding residues, while
DY is a real matrix. This form is very similar to the
VF model (2), with one important difference: the poles and
residues are not complex conjugate pairs. In this work, the
CVF is a variant of the VF algorithm available at [8], which
implements the techniques in [4]-[7], [9], [10]. Since VF
has been extensively studied in the past two decades, and
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Fig. 3. The simulated or measured scattering parameters at a set of discrete
frequency samples (top) and the corresponding baseband scattering parameters
(bottom).

the proposed CVF shares several similarities with it, only
the differences that are relevant for our application will be
discussed in the following. Interested readers are referred to
[4]-[7], [9], [10] for a thorough understanding of the VF
modeling approach.

In particular, both CVF and VF adopt pole-residue models
formed by real and complex poles having a negative real part,
in order to guarantee the stability of the model [11]. For the VF
technique, the complex poles and the corresponding residues
must always occur in complex conjugate pairs to guarantee
that the frequency response is always symmetric around zero
(even amplitude and odd phase) and the corresponding impulse
response in the time domain is real-valued: these are fun-
damental properties of linear and passive systems. However,
baseband systems are non-physical and have an asymmetric
frequency response with respect to 0 Hz by construction.
Therefore, VF cannot be applied to modeling such systems
directly [2], [3].

In order to overcome this problem, the complex conjugacy
constraint on poles (and residues) is removed in the CVF
algorithm. Besides this difference, the methodology employed
to compute a pole-residue model is the same: the pole flipping
scheme [4], relaxed formulation [9] and fast implementation
base on QR decomposition [5] used in VF can be directly
adopted for CVE

The idea of removing the complex conjugacy constraint
in the VF algorithm was first proposed in [12] in order to
design complex infinite impulse response (IIR) filters having
asymmetric frequency response. However, the models built in
[12] are not used for time-domain simulations: the passivity
definition, assessment and enforcement of the complex-valued
models are not investigated in [12], while here they are
rigorously studied in Section IV-B.

Once a model in the form (6) has been obtained via the
CVF algorithm, it can be easily converted into a corresponding
state-space form as

d%ft) = Az (t) + B ay(t)
bi(t) = CVMay(t) + D ay (1),

where a;(t) € C™ ! and b;(t) € C"*! are the incident

@)

and reflected signals of the baseband system, respectively,
which are the baseband equivalents of a(t) and b(t), while
xz;(t) € C™*! is the baseband equivalent of x(t). The
matrices ACW, BCVF, CV DY can be analytically
obtained from (6), by using the same methodologies developed
for the VF algorithm [7]. Now, time-domain simulations can
be performed by solving (7) with relatively large time steps,
since the spectrum of baseband signals and systems no longer
depends on the carrier frequency. It is important to remark that
the baseband model built by the proposed CVF technique is
only half the size of the model built via the technique in [2],
[3]. Indeed, the proposed technique only models the frequency
response at positive frequency range while the technique in
[2], [3] models the frequency response at both positive and
negative frequency range as shown in Fig. 3.

)

B. Passivity Assessment and Enforcement

Since the baseband model (7) will be used for simulations
in the time domain, the model must be passive [11]. In [2],
[3], the passivity definition and conditions for complex-valued
linear baseband systems are presented. In particular, there are
two passivity constraints that baseband scattering parameters
S (s) must satisfy:

1) S;(s) is analytic in Re(s) > 0;

2) I, — S} (s)S(s) is a nonnegative-definite matrix for all
s such that Re(s) > 0.
where I, is the identity matrix of size n x m. Note that
such conditions are the same as for physical systems, with
the exception that the conjugacy relation S™(s) = S(s*) no
longer needs to hold for complex-valued systems.

Now, the above passivity conditions require that the max-
imum singular value of S;(s) is bounded by unity at all
frequencies. In this framework, it has been proven that the
Hamiltonian matrix M can be used to assess the model
passivity with accuracy and efficiency, which is defined as

My, M12}

®)

M =
[Mm M

where
M, =A—-BL 'DiC,

My, = —BL 'BY,

M, =cCcHQ ', )
My =-A" 1 DL B,
L=D“D-1,, Q=DD"-1,.

In particular, a (complex- or real-valued) stable state-space
model is passive if its Hamiltonian matrix has no purely imag-
inary eigenvalues: any such eigenvalue indicates a crossover
frequency where a singular value of the scattering matrix
changes from being smaller to larger than unity, or vice versa
[2], [7]. Once the crossover frequency points are identified by
checking the eigenvalues of (8), the local maxima of violating
singular values of the scattering matrix can be found [10].
Hence, passivity can be enforced by perturbing the residues
such that the violating singular values become smaller than
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(Simulated or measured scattering parameters)
S(f) r=1,2,+R

lShift by f.
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Fig. 4. The flowchart of the proposed modeling technique.

unity [10]. The flowchart of the proposed modeling strategy
is shown in Fig. 4

V. NUMERICAL EXAMPLE

Assume that the bandpass filter in Fig. 5 is used to filter
incoming modulated signals and that its passband is centered
at 12 GHz, with 3 dB bandwidth 1.27 GHz. First, the scattering
parameters of the filter are evaluated in ADS' in the frequency
range [9; 15] GHz. Following the proposed technique, the
CVF baseband model in the form (7) is built with 6 poles,
achieving a maximum absolute error of -70 dB in magnitude.
The accuracy of the built model is shown in Fig. 6.

For comparison purpose, a VF model is built with the same
error threshold of -70 dB, leading to a 12 poles model in
the form (3). Note that this VF model represents a bandpass
system and is defined in the bandwidth [9; 15] GHz, centered
around the carrier frequency f. = 12 GHz. Then, a baseband
model (which will be indicated as “shifted” baseband model in
the following) can be computed from the VF model according
to [2], [3], which also has 12 poles.

Then, the filter is assumed to be excited at the left port
by a voltage source with internal resistance Ry = 50 (),
while the other port is terminated on a Ry = 50 Q. The
voltage source generates a modulated signal which is formed
by modulating a pseudo-random sequence of 1000 bits (with
a bit time of 4 ns) on a carrier with f. = 12 GHz. The
time-domain simulations of the three models: the bandpass
VF model (3), the shifted baseband model [2], [3], and the
novel CVF baseband model (7), are performed in Matlab.
Figure 7 illustrates the output voltages obtained from different
models up to 60 ns. Note that the port voltages and currents

g
]
|
I
e

Fig. 5. The structure of the microstrip bandpass filter under study.

! Advanced Design System (ADS), Keysight Technologies.
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Fig. 6. The accuracy of the CVF baseband model S;(f) with regard to
baseband scattering parameters S;(f;).
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Fig. 7. The output voltage obtained from time-domain simulations of different
models; the red line represents the output voltage from the bandpass VF model
(3) which is a modulated signal, the blue line represents the amplitude of the
output voltage from the novel CVF baseband model (7), while green crosses
represent the amplitude of the output voltage from the shifted baseband model

(21, [3].

from the shifted baseband model and the CVF model (7)
are the baseband equivalents (and complex envelope [1]) of
the port signals from the bandpass VF model (3), which is
accurately demonstrated in Fig. 7. As mentioned in Section III,
the modulated port signals of the filter can be analytically
recovered from the port signals of the baseband models. This
is demonstrated in Fig. 8, where the modulated output voltage
is calculated from the baseband output and is compared to
the modulated output voltage generated from the bandpass VF
model (3), which shows an excellent agreement.

The time-domain simulation of the bandpass VF model
(3) adopts a time step of 2 ps and requires 2.7 s, while
the simulations of the shifted baseband model [2], [3] and
the CVF baseband model (7) employ a time step of 40 ps
and require 0.4 s and 0.2 s, respectively. Both baseband
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Fig. 8. The modulated output voltage of the filter, which is also a zoom of
the area marked in Fig. 7.

models significantly outperform the bandpass model. When
the number of poles of the two baseband models increases,
the CVF model will outperform the shifted baseband model
[2], [3] in terms of simulation efficiency, since the CVF model
is only half the size of the shifted baseband model.

VI. CONCLUSION

This paper extended the baseband modeling and simulation
technique to RF/analog parts in communication systems. The
CVF algorithm was proposed to build stable, passive and
compact models of complex-valued baseband equivalents of
analog bandpass systems. The advantage of the proposed
technique is that the time steps for time-domain simulations of
such systems can be chosen only according to the bandwidth
of modulating signals rather than carriers. This allows to
significantly reduce the simulation time, especially when the
system has multiple ports and when the model requires many
poles.
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