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Abstract — Radar systems can be used to perform human
activity recognition in a privacy preserving manner. Deep Neural
Networks are able to effectively process the complex radar data
and make predictions. Often these networks are large and do not
scale well when processing a large amount of radar streams at
once, for example when monitoring multiple rooms in a hospital.
This work proposes Bayesian Split Bidirectional Recurrent Neural
Network for Human Activity Recognition. Using this technique
the processing of data is split in two parts, one part on-premise
(low-power, low-cost device), and the other off-premise (high
power device). The proposed approach leverages the power of
the off-premise device to quantify its uncertainty, and to gain
more information on its epistemic and its aleatoric parts. Results
indicate the proposed approach is able to correctly identify parts
of a prediction that either need more training data for better
predictions (epistemic uncertainty), or are inherently hard to
classify by the model (aleatoric uncertainty).

Keywords — radar, human activity recognition, bidirectional
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I. INTRODUCTION

Real-time activity recognition in a hospital room or nursing
home is important, because it can help to detect troublesome
events, such as the fall of a patient, as soon as possible. This
is most meaningful for geriatric patients [1], [2] that are more
likely to suffer lasting injuries from a fall, especially if treatment
is delayed. Using radar, a privacy-preserving method to detect
falls can be established. A popular technique to perform fall
detection, or human activity recognition is Deep Learning (DL).
Data-driven DL models require high training times and powerful
machines at prediction time. When this is deployed at scale
to handle many radars at once, the cost of using DL increases
significantly.

Split BiRNNs [3] were introduced to combat the
requirements needed to handle many streams radars at once. A
two-staged model, designed to work on separate devices with
distinct Micro-Doppler [4] streams, facilitates live monitoring of
human activities in many different environments simultaneously,
for example in a hospital with many rooms. The two-stage
design flow is as follows:

1. An edge device computes the class predictions on a
stream of incoming radar frames, using a lightweight
model. This enables streaming of results in real-time to
those who need immediate feedback from the model.

2. Another more capable device (able to process large
amounts of data in a batch) applies a backward model
on intermediate computations made by the edge devices

and improves the predictions. Any inaccurate predictions
made by the edge device are rectified by this more
capable device.

In this work, the backward model is extended using Monte
Carlo Dropout (MCD) [5] to predict a distribution of possible
activities, rather than a single activity at any given time. This
way, both epistemic and aleatoric uncertainty can be calculated.
The epistemic uncertainty describes how uncertain the model
is about a given prediction, while the aleatoric uncertainty
expresses the uncertainty inherent to the data. These can be
used to evaluate the model at prediction time, and to identify
highly uncertain events, or to detect when the model needs
retraining if many uncertain events keep occurring.

II. BACKGROUND

A. Split BiRNN

The Split BiRNN technique [3] consists of two linked
networks called forward branch and backward branch. To
update predictions as new data flows into the forward branch,
the unidirectional nature of Recurrent Neural Networks (RNN)
is used. These feed a state from one time step to the next,
and only require the previous state and the current input to
calculate the next state. The state of a forward RNN is denoted
as
−→
h (t), with t denoting the time step corresponding to this

hidden state. f is the non-linear function (LSTM [6], GRU [7],
. . . ) applied to the input x(t) at time t, parametrized by θ and
n refers to the corresponding layer.

−→
h

(t)
n+1 = f(x(t),

−→
h (t−1)

n ;θ). (1)

This means that given time t, state h(t−1) is the only state
necessary to calculate state h(t). This is different when making
use of a Bidirectional RNN (BiRNN). In this case, an RNN
layer is added that processes the input data in reverse. The
resulting hidden states of the forward and backward RNN layers
are then concatenated. This means the output is dependent on
previous and following states when using a bidirectional RNN.
The concatenation function between vectors is denoted as ++.
Concatenation is used in this work to maximize the amount
of data fed into the backward branch, but another addition
operator could be used instead to save memory, or could be a
learned operator. The backward RNN state is denoted as

←−
h (t).

θ1 and θ2 are used to highlight the different parametrization
between the forward and backward RNNs.
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h(t)
n = f(h

(t)
n−1,

−→
h (t−1)

n ;θ1) ++ f(h
(t)
n−1,

←−
h (t+1)

n ;θ2). (2)

In the Split BiRNN model, the calculation of the forward
and the backward state is split. The general deep case is noted
as
−→
h

(t)
0 =

←−
h

(t)
0 = x(t), while the parameters θ are omitted

for notational convenience.:

−→
h (t)

n = f(
−→
h

(t)
n−1,

−→
h (t−1)

n ) (3)
←−
h (t)

n = f(
−→
h

(t)
n−1 ++

←−
h

(t)
n−1,

←−
h (t+1)

n ) (4)

h(t)
n =

−→
h (t)

n ++
←−
h (t)

n . (5)

The forward branch of the network follows the regular
structure of a deep RNN with a fully connected layer for
predictions, as seen in Figure 1.

The backward branch differs from regular deep BiRNN
networks because it is run separately from the forward branch,
but shares the same weights in the final fully connected layer. In
a regular BiRNN, the output of the forward and the backward
RNNs would be concatenated and fed into the next layer. The
model differs in that the forward RNN always operates without
knowledge of the output of the backward layer. This has the
advantage that both branches can be jointly trained, reducing
the full model size. This is not necessary, as a separate fully
connected layer could be trained instead.

The states
−→
h

(t)
n calculated in the forward branch are reused

when calculating the backward branch. Figure 2 shows how
they are concatenated, as described in (5).

B. Uncertainty Quantification using Monte Carlo Dropout

Uncertainty of a prediction consists of two major
components: the epistemic uncertainty and the aleatoric
uncertainty. The epistemic uncertainty encodes how many
models fit the data, given the model architecture. Hence, low
(high) entropy describes high (low) agreement between different
models and their predictions, respectively. The entropy of a
sampled distribution is calculated as

H[p(x)] = −
∑
x∈X

p(x) log2 p(x), (6)

describing how surprising the distribution is.
a) Epistemic Uncertainty: The epistemic uncertainty

displayed by a model parameterized by θ and trained on
dataset D is measured by the posterior probability distribution:
p(θ|D) ∝ p(D|θ)p(θ), as derived from Bayes’ Rule. This
posterior distribution exhibits high entropy if a model was not
trained on enough data to explain the observation. This type
of uncertainty is therefore also referred to as reducible, as
more training data reduces this uncertainty. As a consequence,
with a sufficiently complex model, a highly entropic posterior
distribution for a certain input likely means the data point is out
of distribution. Applying this to Human Activity Recognition
(HAR), this uncertainty will be high when making a prediction
on actions with diverse ways of execution (e.g. cleaning,
cooking, ...), where not all possible variations of the activity

are captured in the dataset. This may also occur when little
samples of a given class are available in the dataset.

b) Aleatoric Uncertainty: The aleatoric uncertainty
expressed by a model is encoded in the conditional distribution
of a class, given an input and a set of weights: p(y|x,θ).
It describes the inherent ambiguity in the data and cannot
be explained away by introducing more data. An example of
aleatoric uncertainty arising is when the model learns that some
data points are inherently hard to classify. This may be the
case when activities are similar in nature, such as sitting down
on a bed or sitting down on a chair.

c) Monte Carlo Dropout on Split BiRNN: The
backward branch of the aforementioned Split BiRNN can be
adapted to perform MCD [5]. This means the output of the
network is no longer a single point, but rather an ensemble
of models describing a predictive posterior distribution p(y|x).
Following [8], the total predictive uncertainty of an ensemble,
such as the one obtained by training and performing predictions
with dropout [9], is found by averaging the predictions of
the ensemble and calculating the resulting entropy, where M
describes the amount of samples from the MCD distribution:

ut(x) = −
∑
y∈y

(
1

M

M∑
i=1

p(y|θi,x)

)
log2

(
1

M

M∑
i=1

p(y|θi,x)

)
.

(7)
The resulting uncertainty estimate ut(x) also includes the

epistemic uncertainty about the network weights θ. Fixing a
single set of weights removes this uncertainty. Therefore, the
expectation over the entropies of these distributions for an
ensemble model

ua(x) = −
1

M

M∑
i=1

∑
y∈y

p(y|θi,x) log2 p(y|θi,x). (8)

is a measure of aleatoric uncertainty. Finally, the epistemic
uncertainty is simply calculated as the difference

ue(x) = ut(x)− ua(x). (9)

III. EXPERIMENTS

A. Dataset and Model

a) Dataset: The model is trained and evaluated on
the PARRad dataset1 [10], [3]. In total, 22 hours of radar
data are split into two subsets: Homelab and Hospital, both
(simulating) hospital rooms. This work focuses on the Hospital
subset contained in PARrad, containing 13359 activities spread
over 9 combined classes, see Table 1. The Hospital dataset is
comprised of 20 test subjects performing different activities in
4 different 10-minute sessions.

This dataset contains Micro-Doppler (MD) signatures
recorded with an off the shelf Texas Instruments (TI) xWR14xx
radar with center frequency of 77 GHz, and a TI xWR68xx
radar with center frequency of 60 GHz. In this paper, MD

1Publically available at https://sumo.intec.ugent.be/radar
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Fig. 1. Graphical model of the forward step. The backward step is grayed out.
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Fig. 2. Graphical model of the backward step. The grayed out lines and blocks in the forward step indicate that this step is no longer necessary because the
values are pre-computed in the forward step, and can be reused.

Table 1. Classes available in PARrad, including the transformations made by
combining different classes.

Activity Samples

Walk 149880
Fall on the floor 33435
Stand up 99050
Sit down 55010
Get in bed 29665
Lie in bed (stop moving) 23040
Roll in bed 30555
Sit in bed (from lying down) 21120
Get out bed 32225

signatures [4] over time are used, which capture speed relative
to the radar sensor. These are placed in different corners of
the hospital room, and capture activities simultaneously. This
means every capture session is effectively duplicated, albeit
with differences in the field of view of the radar sensors.

The captured MD signatures consist of 128 Doppler
bins, which were averaged from the 93 range bins in their
corresponding RD maps. These MD signatures are stacked over
time, so there is a datapoint X ∈ Rt×128 for every recording
in the dataset, where t varies from recording to recording. t is
commonly around t = 6666, which corresponds to 10 minutes
real time due to the frame length being 0.09 s.

b) Model: The model is adopted from [3], which is a
hybrid CNN-GRU approach [11], [12]. The latter part of the
network has been extended with three extra fully connected
layers with ReLU as non-linear activation function, on which
dropout is applied with a rate of 0.2.

B. Discussion

Both the aleatoric (ua) and epistemic uncertainty (ue) are
calculated on the test set. A single recording is chosen to
evaluate the merit of uncertainty. Each prediction is sampled
M = 20 times using dropout. The resulting weighted F1-score
of the MCD model is 0.890, while that of the normal model
is 0.903, which is statistically insignificant. The predictions
and their corresponding uncertainties over time can be seen in
Figure 3.

Both the epistemic and aleatoric uncertainty are calculated
for each time step in the recording. This makes it possible to
identify activities that come with high uncertainty.

High aleatoric uncertainty can be seen at the edges of
activities. This is likely due to the inherent ambiguity that
exists when transitioning from one activity to another, and the
continuous nature of the problem. Longer events of aleatoric
uncertainty may be of higher interest, such as what is seen in
the beginning of the predictions. There the predictions are more
erratic, and four classes seem to be considered simultaneously.

It can be seen that areas with high epistemic uncertainty
are highly informative, as they point out classes and situations
where the model needs more data to improve its certainty,
being the bed activities. Aleatoric uncertainty however needs
to further be filtered, as every transition between activities
contains relatively high uncertainty values. Ignoring these short
transient periods, high aleatoric uncertainty can be seen at the
activities performed in bed. These activities in the PARrad
dataset contain more fine-grained movements than the rest.
These are all performed in a single location in the hospital
room, and constitute the smallest portion of the dataset.

Thresholds could be set on both quantities of uncertainty.
On the one hand, a lot of aleatoric uncertainty might inform
the user that the actions are too hard to distinguish. This either
because the actions themselves are not well defined, or because
the sensor may not capture it accurately. On the other hand,
high aleatoric uncertainty means the model needs more data.
Identifying the activities which need more data would improve
model accuracy.

IV. CONCLUSION AND FUTURE WORK

In this work, a Bayesian interpretation of Split BiRNNs
is proposed that uses Monte Carlo Dropout. As a result, both
epistemic and aleatoric uncertainty can be quantified. It is shown
that these uncertainties correspond to respectively inherent
ambiguities present in the data, and the activities for which
little data is available.

This work only handles the uncertainty quantification of
the backward branch, but the forward branch may be equally
important. However, due to the many evaluations needed for a
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Fig. 3. (a) Ground truth labels over time, yellow regions denote the occurence of a captured activity (b) Predictions over time between 0 and 1, with the yellow
shade denoting 1 (c) Aleatoric uncertainty expressed as entropy in bits overlaid on the original MD over time (d) Epistemic uncertainty expressed as entropy in
bits overlaid on the original MD over time

single prediction, MCD is not suitable on the on-premise device
as it increases the workload. As future work, an investigation
of efficient Bayesian techniques will be conducted to allow
the on-premise device to decide when to send a prediction to
the off-premise device, lowering the amount of computation
needed by the entire system.
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