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Abstract—In this work, a new methodology based on deep
Gaussian processes (DGP) is proposed for the modeling and
optimization of the S-parameter response of a microwave device.
The DGP is used as a surrogate model to directly predict the
magnitude (or phase) of the S-parameter as a function over
the frequency and over the design parameters of the device.
Subsequently an objective probability distribution is retrieved
and maximized in a Bayesian optimization (BO) scheme. The
new strategy overcomes the limitation of the standard Bayesian
optimization that employs an objective function model: simple
objective functions are easy to model but may lead to sub-optimal
responses, while complicated objective functions may require
more powerful and less efficient models. An adequate microwave
example demonstrates the increased optimization accuracy of the
proposed approach, comparing to standard BO.

Index Terms—S-parameter, electronic design automation
(EDA), Bayesian optimization, deep Gaussian processes (DGP).

I. INTRODUCTION

In microwave design, many expensive simulations are often
executed to find the design parameter that produce the desired
S-parameter response. Thankfully, this task can be automated
and accelerated using optimization algorithms, that are able to
identify the optimal parameter values with a reduced number
of simulations [1]. In the last decades, efficient optimization
strategies have been built on surrogate models that replace the
simulator by representing the device response as a function
of design parameters. In particular, the Bayesian optimization
(BO) [2], [3] employs a stochastic surrogate model, such as the
Gaussian process (GP) [4], that is updated sequentially, as soon
as each new simulation is completed. In fact, the stochastic
model predicts the likelihood for any parameter values to yield
the desired performance. Consequently, the design parameters
that maximize such likelihood can be sequentially selected for
the next simulations, until the best are found.

In standard BO, the performance of the S-parameter re-
sponse is measured and optimized via a user-defined objec-
tive function over the design parameters space. However, if
the objective function is too simple, the surrogate may fail
to identify the best design parameters combination. On the
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other hand, complicated objectives may require less data-
efficient surrogate models. In this work, a new methodology
is proposed to overcome this limitation by directly model
the S-parameter response, rather than an objective function,
using deep Gaussian processes (DGP) [5]. In fact, DGPs are
composed by an input-output chain of Gaussian processes
(Fig.1a): the resulting architecture is able to represent more
complicated functions, and functions that are a realization of
nonstationary stochastic processes. Subsequently, a suitable
objective probability distribution can be retrieved from the
DGP and then maximized, in order to built a more efficient
Bayesian optimization scheme.

II. METHODOLOGY

The proposed S-parameter optimization strategy based on
deep Gaussian process is represented in Fig.1b. The strategy
begins by training the DGP surrogate model on few initial
samples of a scalar S-parameter response s:

s(p, f) ∼ DGP (p, f) (1)

where p is the design parameters vector and f is the frequency.
Next, an objective probability distribution q̂ is defined as
follows, based on the design requirement of the microwave
device:

q̂(p) =
∑
f∈Tf

g(DGP (p, f), f) (2)

where Tf is a test set of frequencies, while the g function is
linear over the s values predicted by the DGP. The design
specifications can be incorporated in g such that better S
response return higher values of the function. Since the s
values are modelled by the DGP as random Gaussian variables,
the linearity of g guarantees that the q̂ values also obey to a
Gaussian distribution. Thus, the analytical form of the expecta-
tion and the variance of the objective distribution is known, for
each possible design parameter values p. Consequently, similar
to the standard Bayesian optimization [2], [3], an acquisition
function can be computed on q̂ to select the design parameters
that are most likely to maximize the objective distribution.
Finally, the new S response relative to selected parameters is
simulated and added to the initial samples, in order to update
the surrogate model. This process is re-iterated until a stop
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Fig. 1. a) Example of deep Gaussian process architecture. b) Workflow of the
proposed strategy based on a DGP model of the S response over the frequency.
c) Dual-band slot antenna (top view); the geometry is symmetric with respect
to the vertical axis. d) Optimal S-responses identified with 5 different runs of
the new strategy and the standard BO, after 30 iterations.

condition is met. As a result, the new strategy aims at the
parameter values that produce the highest objective distribution
expectation, which corresponds to the best S response for the
considered design specifications.

III. APPLICATION EXAMPLE

The presented strategy is used to optimize the magnitude
of the Γ reflection coefficient of a dual-band slot antenna [6]
in the range [1, 4.5] GHz, relative to the design parameters
L1, L2, L3 (Fig.1c). The reflection scattering coefficient Γ of
the DUT is computed at the single differential port via ADS
Momentum [7] for 50 equispaced frequencies in [1.5, 6] GHz.
Then, the g function for the objective distribution is defined
as the absolute distance between the response and the desired
specification limits for the pass bands and the stop bands:

g(p, f) = |Γ(p, f)| − 0.79 for f < 1.9GHz (3a)
g(p, f) = 0.18− |Γ(p, f)| for f ∈ [2.2, 2.7]GHz (3b)
g(p, f) = |Γ(p, f)| − 0.79 for f ∈ [3.0, 4.0]GHz (3c)
g(p, f) = 0.18− |Γ(p, f)| for f ∈ [4.3, 4.8]GHz (3d)
g(p, f) = |Γ(p, f)| − 0.79 for f > 5.1GHz (3e)

Next, a 3-layer DGP model is used in the proposed strategy
(Fig.1a). Both the new strategy and the standard BO with GP
are executed for 30 iterations, for 5 different sets of initial
response samples. Each set contains S responses simulated for
10 design parameters combination in a latin hypercube design
[8]. For reference, a baseline optimal response is found among
1000 simulations with different parameter values, selected
from a latin hypercube design. Figure 1d shows that, for
each of the 5 initial sets, the new strategy using DGP and
objective distribution identifies an optimal response Γ (blue
curves) that is closer to the reference optimal response (green
curve), comparing to the standard BO with objective function
modeling via GP (red curves). Moreover, experiments indicate
that a simple GP could not be used reliably as surrogates in
the new strategy, since they are not sufficiently powerful to
model the S parameter curves over the frequency.

The use of DGP increases the computational time needed to
perform each iteration of the optimization. In fact, due to the
use of variational inference at each layer, the DGP requires
around 20 sec to be trained in this application example,
compared to 1 sec using a simple GP. Similarly, inferring the
objective values (Equation 2) for the acquisition function takes
around 7 sec with DGP, versus 1 sec with GP.

IV. CONCLUSION

The presented Bayesian optimization strategy allows to
directly model an S-parameter curve over frequency using a
deep Gaussian process (DGP). A new objective probability
distribution can be computed on the model in order to value
any S-parameter curve according to sophisticated design spec-
ifications. Similar to standard Bayesian optimization, new S-
parameter responses can be sequentially collected, improving
the model along the way. The new strategy better identifies
good S-parameter responses with a low amount of expensive
simulations, compared to standard BO.
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