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Recent advancements in transfer learning have revolutionized predictive maintenance, enabling cross-domain gen-
eralization for components with varying characteristics and operating under different conditions. While traditional
transfer learning approaches require labeled data in both source and target domains, unsupervised transfer learning
strives for a more cost-effective alternative for which only labels are available in the source domain. This study
investigates adversarial transfer learning between two different sensor modalities: vibration and acoustic. The goal
is to enable bearing monitoring using microphones, which are, in general terms, cheaper and easier to deploy than
vibration sensors; and without the need to label data in the target domain. The research goal is to identify the
operating speed of a bearing testbed. The source domain data correspond to vibration measurements taken from
an attached sensor, while the target domain uses a microphone array at distance. Artificial Neural Networks are
used as the base architecture. Transferability is assessed with two unsupervised adversarial learning techniques:
gradient reversal and deep correlation alignment. Their performance is compared to traditional supervised trans-
fer learning via fine-tuning. Experimental results demonstrate that gradient reversal outperforms deep correlation
alignment and is able to achieve results similar to those obtained with supervised transfer learning. These find-
ings highlight the feasibility of speed identification using a microphone array and establish a baseline for future
condition monitoring research with such sensors.

NOMENCLATURE
AD-TL Anomaly Detection and Transfer Learning
ANN Artificial Neural Networks
CNN Convolutional Neural Networks
CORAL Deep correlation alignment
CWRU Case Western Reserve University
IMS Intelligent Maintenance System
OOB Out-Of-Bag
PdM Predictive Maintenance
PHM Prognostics and Health Management
SMLL Smart Maintenance Living Lab
STL Supervised Transfer Learning
UTL Unsupervised Transfer Learning

1. INTRODUCTION

Predictive maintenance (PdM) models of mechanical com-
ponents are key components of Prognostics and Health Man-
agement (PHM) in the industry. Accurate PdM models allow
improvements in terms of quality, safety, maintenance schedul-
ing, and cost reduction. While developing monitoring solu-
tions in the industry, an important step is the correct selection
of the sensor type. The sensor’s type selection is done based
on criteria such as the type of machine to monitor, implementa-
tion costs, early detection capabilities, whether the sensors can
be attached to the machine or not, among others.Regarding the
monitoring of mechanical components, the most common sen-
sor types measure vibration, sound, or temperature. Thanks
to the advances in computer vision the use of cameras and
infrared cameras has also become widespread. With respect
to the sensor’s cost, vibration sensors based on piezoelectric
components and MEMS tend to be the most costly of the so-
lutions; microphones and ultrasonic microphones in the mid-

price spectrum; and temperature sensors are in the low cost
range.1 It is important to note that this is a broad generaliza-
tion, as specifications concerning bandwidth, noise reduction,
packaging, and other characteristics can considerably impact
the sensor’s price. Another important aspect is the early detec-
tion capability of each of these sensor modalities. As depicted
in Fig. 1, vibration sensors and ultrasonic microphones have
the best early detection capabilities, whereas temperature and
microphone sensors have more limited detection capabilities.
Finally, the environment where the machines operate poses
limitations on the type of sensor that can be used and potential
costs due to a sensor’s damage. For example, machines with
mechanical components that move or rotate can easily dam-
age sensors and wires. Other environmental scenarios pose
limitations due to the presence of contaminants, extreme tem-
peratures, high humidity, water, among others. In this respect
sensors that do not need to be attached or in proximity to the
machines, such as cameras and microphones, provide a better
alternative. This research focuses on creating a bridge between
vibration sensors and microphones, where the goal is to en-
able better monitoring capabilities using microphone data by
reusing data collected with vibration sensors.

The interest in acoustic sensors as a monitoring solution is
based on the advantages that microphones offer over vibration
sensors, namely: they are easier to set up and can be installed
at safe distances from the machines. In addition, as they do
not need to be attached to the machines, they can be easily
protected from environmental hazards, such as high temper-
ature or humidity; and are cheaper when compared to other
sensor types. However, the use of microphones comes with
challenges and limitations. The main drawback of microphone
solutions is that they capture environmental noise which is ir-
relevant for monitoring purposes. The noise bandwidth can,
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Figure 1. Machine health over time and the sensor types that can detect dam-
age at each stage. Depicted in Murphy et al.1

in some instances, overlap with the bandwidth of interest for
monitoring, and in such scenarios, filtering is not a trivial task.
Furthermore, sensors attached to the machine (e.g., vibration)
capture the spectra of the actual vibration, whereas micro-
phones capture a distorted representation due to the interfer-
ence of other possible components, attenuation due to vary-
ing distance to the microphone, phase and frequency shifts
introduced due to the change in medium, among other fac-
tors. Finally, according to industrial reports,1 acoustic sensors
have the most limited capability for detecting damage at early
stages.

To harness the potential of acoustic sensors while address-
ing their shortcomings, this research proposes the use of deep
learning models, which can infer high-quality features that
overcome the previously mentioned distortions. Furthermore,
unsupervised transfer learning techniques are investigated to
enable transfer in a scenario where labels are only available
for the source domain. This is ideal in scenarios where la-
beling can be expensive, or deployment can be accelerated by
avoiding labeling in the target domain. The transferal can be
described as training models using high quality vibration data
and co-training using unlabeled and lower quality data from
microphones.

Two transfer learning (TL) paradigms are evaluated here,
namely supervised transfer learning (STL) and unsupervised
transfer learning (UTL). The difference between the paradigms
is based on whether labels from the target domain can be used
during the training phase. The STL approach followed is con-
sidered a reference for the performance that could be expected
if the labels were available. The methodologies are evaluated
using the Smart Maintenance Living Lab (SMLL) dataset cre-
ated by Flanders Make and imec, which includes vibration,
acoustic, and temperature recordings.2

The paper is divided as follows: Section 2 reviews research
related to PdM tasks using deep learning and transfer learn-
ing techniques. Section 3 presents the theory behind fine-
tuning which is the STL technique used as a baseline. Sec-
tion 4 presents the theory behind the unsupervised learning
techniques used in this study. Section 5 presents the SMLL
dataset and describes the differences between the domains.
Section 6 outlines the methodology, which consists of the fea-
ture representation, the architecture selection, and the evalu-
ation method. Section 7 presents the results and discussion.
Section 8 proposes lines for future research. Finally, Section 9
presents the conclusions and suggestions for future research.

2. RELATED RESEARCH

Over the last few years, machine learning techniques have
proven successful in solving various PdM tasks. More specif-
ically, deep learning has garnered attention due to its ability
to identify patterns from raw or lightly processed data. The
related research reviewed focused on the deep learning solu-
tions as the TL techniques covered in this study are designed
to work for neural network architectures. Deep learning tech-
niques have been successfully used for tasks such as anomaly
detection, fault classification, and remaining useful life esti-
mation.3, 4 This study addresses the problem of identifying the
operating speed, a known parameter, and therefore can be used
as a metric of how a healthy bearing deviates from previously
seen data. The goal is to demonstrate that transferal can be
done in an unsupervised way. If the task can be successfully
performed, the next steps would be a PdM task via unsuper-
vised learning by, for example, using the learned embeddings
in combination with a one-class classifier or other anomaly de-
tection approaches.

The next Section is divided as follows: first, an overview
of deep learning approaches for PdM is detailed; followed by
a brief overview of supervised TL in the PdM domain; and
finally, the unsupervised TL literature.

2.1. Deep Learning
This section provides an overview of successful applications

of deep learning with different data representations within
the supervised domain for PdM. Artificial Neural Networks
(ANN) have successfully been used on raw time signals for
benchmark datasets such as the Case Western Reserve Univer-
sity (CWRU) and the Intelligent Maintenance System (IMS)
Bearing Dataset.5 A feed-forward network that uses raw data
as input was able to correctly classify the different faults
present in the datasets. However, using feed-forward net-
works is only possible with relatively small time windows as
the dimensionality of the network increases drastically with
high-sampling sensors. Other data representation modes, such
as spectrograms, are preferred as they provide smaller input
spaces. The spectrogram representation has been used in com-
bination with feed-forward networks for tasks such as remain-
ing useful life estimation.6, 7

Convolutional Neural Networks (CNN) are an evident ex-
tension to ANN due to their ability to exploit time and fre-
quency relations of the data, in addition to being more pa-
rameter efficient. CNN architectures have become more popu-
lar due to their parameter efficiency, as can be observed from
the extensive literature surrounding them. For example, CNNs
have been used together with temporal data8 and wavelet trans-
forms9 for estimating remaining useful life. Raw temporal
data, or lightly processed, has been used for fault classification
of bearings.10–13 In these studies the input vector corresponds
to the vibrations over time, where in some cases data are rear-
ranged as images in two dimensions in order to use two dimen-
sional kernels. Representation in the frequency domain such as
Fourier transform and discrete wavelet transform,14 continuous
wavelet transform,15 spectrograms,16, 17 and wavelet decom-
position18–20 have also been used for fault classification over
some of the most famous benchmarks such as CWRU, IMS,
and proprietary datasets. In other cases, custom features over
time have been used in combination with CNN architectures
for fault classification as well as wear estimation.21, 22 Overall,
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the literature points to a strong preference for CNNs over other
architectures, allowing for a lot of flexibility in the forms of
data input representation.

The literature review shows that extensive research has been
done in deep learning for PdM, and that diverse architectures
of neural networks can be used. This research uses the mel-
spectrogram representation in combination with ANNs as it
reduces the number of parameters considerably. An alternative
in this case would be to use two-dimensional representations,
such as wavelet transforms or spectrograms, in combination
with architectures such as CNNs or LSTMs, which would pro-
vide additional information about changes over time. How-
ever, as this work focuses on the TL approach, the simpler ar-
chitecture of ANNs was preferred.

2.2. Transfer Learning in PdM Tasks
TL concerns a group of problems in which the objective is

reusing previously acquired knowledge for similar tasks. The
TL problem can be phrased as follows: (i) given a group of
Domains D, each domain contains a dataset with a given set
of features; (ii) the features in each domain measure the same
properties or similar ones, but the distributions across domains
differ; and (iii) TL finds a way to leverage the common in-
formation across domains to improve results on the task for
any given domain. Most commonly, TL is seen as a problem
in which for a first domain there is a considerable amount of
(high quality) data and the knowledge of this domain wants to
be applied on a new domain, where there is a limited amount
of data, and sometimes of lower quality. In other cases, it can
be seen as reusing a model trained to solve a certain task (e.g.,
image recognition), or to solve a secondary task (e.g., regres-
sion).

Large pre-trained deep learning models have been used as
base models for STL. Considerable research has proven that
the technique helps in improving performance, and reduc-
ing the target dataset requirements.23, 24 Large networks like
ResNet25 and InceptionV326 were developed for image classi-
fication tasks and trained on the Imagenet dataset, which con-
sists of pictures of real-life objects. The trained versions of
these models have been reused for different tasks with different
data representations. For example, fault classification of wind
turbine gearboxes using wavelet representation as inputs and
the pre-trained ResNet as feature map extraction;27 fault detec-
tion in photovoltaic plants using thermal images and the pre-
trained ResNet;28 and wear estimation of cutting tools based
on image inputs using pre-trained models such as ResNet, In-
ceptionV3 and AlexNet as a basis for a fine-tuning approach.29

One important point to consider about the previously men-
tioned approaches is the validity of the pre-trained weights,
as they have been trained to recognize objects in real-life im-
ages, which may not necessarily translate to representations of
spectrograms or other types of images, such as the physical
condition of mechanical components. The work by Janssens
et al.30 uses the pre-trained VGG network for fault detection
and oil level prediction using infra-red images. Their work
showed that models trained for image recognition (VGG) can
be adapted for thermal images. Note that in this scenario the
base weights are likely to be relevant as they pertain real world
shapes. This example is relevant to the work presented in this
paper, with the difference that in the proposed scenario the data
do not correspond to photographic images.

Other types of TL approaches have focused on the transferal
across two predictive maintenance tasks. This shift can occur
in cases where the source and target correspond to similar com-
ponents with different specifications; the analysis of different
fault types;13, 22, 31 or discrepancies in data distributions of the
same mechanical component due to a large heterogeneity.32, 33

Concerning UTL for PdM, adversarial TL with class
weights has been applied across bearings operating under dif-
ferent conditions of the CWRU dataset.34 Their results proved
to have a clear advantage over a baseline with no adaptation
and on par with other domain adaptation approaches. A tech-
nique that uses CNNs with a training procedure that uses the
maximum mean discrepancy to align domains was evaluated
utilizing Case Western Reserve University’s (CWRU) bearing
dataset35 and an in-house produced dataset.36 The transferal
here is between different operating loads for the CWRU’s data
and different speeds for their in-house data. The objective is
to identify the bearing’s condition between healthy and differ-
ent fault categories. Their results achieve high accuracy in the
identification of faults. Note that the work was completed on
CWRU’s dataset, which despite being a common benchmark
is considered easy to solve, with dozens of papers obtaining
accuracies above 99% for each fault type and making it hard
to assess whether one or other techniques offered some true
advantage. An adversarial approach with selective adaptation
in more challenging datasets was presented by Deng et al.37

In their case the adaption is done between the CWRU and the
Paderborn bearing datasets,38 both of which differ consider-
ably in the type of bearings and operating conditions, as well as
between the CWRU and the XJTU-SY datasets39 for different
bearing and fault types. Their results show the effectiveness
of transferring between identical machines but also different
ones.

The literature review shows that the TL problem in the con-
text of PdM is focused mainly on transferal across different
types of faults and for changes in operating conditions for
the same machine, with the notorious exception of the work
by Deng et al.37 Regarding STL, the scenario of changes in
non-image modalities for PdM has never been thoroughly re-
searched. Furthermore, in contrast with previous work, this
research focuses on the transfer between different data modal-
ities, which has been limited so far.

The proposed TL scenario is interesting as a way of adapt-
ing models to changes in the monitoring technology. Poten-
tial applicable scenarios include: (i) updates in the monitor-
ing technology, (ii) changes in workshop conditions that pre-
vent sensors from being attached to the machine (e.g., rotating
components or high temperatures), and (iii) enabling the use
of cheaper and easier-to-deploy technologies (microphones are
considerably cheaper than vibration sensors). In summary, TL
from vibration signals to acoustics can enable new methods of
condition monitoring. This paper reviews TL techniques under
the assumption that no labels are available in the target domain.

The literature review identified challenges within the task
are as follows.

1. There is large variability in the source domain. Bear-
ing datasets have often been reported as being small and
having considerable heterogeneity within same condition
tests. This makes it hard for generalization of models and
poses additional challenges for the TL task. Large hetero-
geneity has been reported in datasets such as Pronostia,40
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IMS,41 as well as SMLL.42

2. Distortions are present in the spectrogram due to a
medium change. The core idea in this research is that
microphones can capture similar information to that of vi-
bration sensors. However, sensor differences, frequency
bands, and distortions due to the change of medium can
considerably affect the acoustic signal quality.

3. Few datasets suitable for evaluating TL are available.
Datasets such as PHM and IMS were not designed for
the TL task, and their sample sizes have proven to be
challenging. The CWRU bearing dataset is the most
commonly used dataset for TL between operating condi-
tions and has been extensively employed. An interesting
dataset is the one used by Gebraeel et al., consisting of
36 bearings; however, it is not publicly available.6 To the
best of our knowledge, no public datasets concerning dif-
ferent data modalities have been developed or released.

3. SUPERVISED TRANSFER LEARNING

The fine-tuning method is one of the most widely used ap-
proaches for the STL task.24 This technique is broadly used
with deep learning models as their parameters can be easily
adapted with respect to the network’s performance over the tar-
get domain. The fine-tuning takes the following steps: First, a
neural network is trained with a large amount of high quality
data from the source domain. Then, a portion of the layers is
so-called frozen, meaning that the weights are fixed, and the
training continues using the target domain data. The weights
which are frozen are not adapted during this step. Finally, the
training is stopped using any preferred strategy, such as detect-
ing the plateau over the validation error.

Most commonly, if the target dataset is small and the number
is relatively large, the preferred approach is freezing all the lay-
ers except the last few ones. The idea behind it is that the initial
layers are able to learn low-level features (e.g. interactions be-
tween the frequency bands) whose interactions are potentially
shared across the different domains. Given the small dataset at
hand (17 independent bearing tests), this is the approach taken.

4. UNSUPERVISED TRANSFER LEARNING

An interesting subproblem within TL is the transferability
in scenarios where labels are available in the source domain
but not in the target domain. This problem can arise in the
industry when a sensing technology has to be changed, and
labeling new data becomes costly or undesirable.

These techniques use information about the feature distribu-
tions in the source and domain and try to align them. One of the
earliest examples is the structural correspondence learning.43

This paradigm was originally proposed for natural language
processing tasks and consists of a representation learning algo-
rithm, where auxiliary classification tasks are used to identify
a set of features that are informative in both domains. The fea-
tures are aligned across domains by doing a linear transforma-
tion. More recent work has focused on ways to achieve similar
results over neural networks that inherently can generate fea-
ture subspaces, which is the core idea behind representation
learning techniques.

Figure 2. Schematic of the gradient reversal architecture. Figure based on the
work by Ganin et al.44

4.1. Gradient Reversal
The gradient reversal (ReverseGrad) method uses a neural

network with two branches, one of which needs to perform
a classification task over the labels of the data (label predic-
tor), while the second branch needs to predict the domain (do-
main classifier).44 A special layer, named gradient reversal,
is used on the domain classifier branch. This layer leaves the
data unchanged during the forward pass and reverses the gra-
dients during propagation. This effectively causes the network
to become less effective at classifying the domain, a concept
known as domain confusion. Furthermore, it serves as a way
to decrease the discrepancy in the feature distributions between
domains at intermediate layers. Fig.2 shows the architecture.
Notice that the upper branch solves the category classification
task and the lower branch the domain classification task. The
outcome of this approach produces feature maps that are ag-
nostic to the domain, which in turns bypasses the need of la-
beling the target domain data.

In practice, gradient reversal can be achieved by either of the
following two strategies:

1. Using a function that behaves as a skip layer during infer-
ence and applies a −λ multiplier at the domain classifier
head during training. The lambda (λ) parameter serves as
a balance between the domain classifier loss and the label
predictor loss.

2. Using an adversarial loss in which the domain labels are
swapped during training.

According to Ganin et al., no significant difference was
found between both strategies.44 This study follows the first
strategy. The lambda parameter is adjusted over epochs fol-
lowing Eq. (1), where gamma is a fixed value, and p represents
the epoch. The purpose here is to allow the network to first find
relevant features on each domain, and then start the process of
domain confusion.

λp =
2

1 + exp(−γ · p)
. (1)

4.2. Deep Correlation Alignment
Deep correlation alignment (Coral) is a more recent algo-

rithm that introduces a loss term in the loss function which
aligns the second order moments of the data.45 The advantages
compared to ReverseGrad are that it does not require the two
branches of the network, which in turn reduces complexity.

Coral loss is defined as the difference between the distances
of sample covariances per batch in Eq. (2), where CS and CT
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are the covariance matrices of the source and target, d is the
number of features, and |·|2F corresponds to the squared matrix
Frobenius norm.

ℓCoral =
1

4d2
∥CSCT ∥2F . (2)

The coral loss and task’s loss are balanced following Eq. (3),
where λ is a weighting factor, and t is the number of layers
to which the coral loss is applied. The coral loss offers the
flexibility of selecting layers where to apply the loss. Similar
to gradient reversals, it is important to note that there is a trade-
off between merging clusters from both domains and achieving
the task. The work by Sun et al. does not provide guidance on
how to determine an adequate λ value for the different layers
or its possible effects.45

ℓ=ℓtask +

t∑
i=1

λiℓCoral. (3)

5. DATASET

The Smart Maintenance Living Lab (SMLL) is an open test
research platform with the purpose of assisting in the adoption
of condition monitoring technologies.2 The platform consists
of a fleet of seven identical drive-train setups that perform ac-
celerated lifetime tests on bearings. The fleet offers three ad-
vantages: first, it enables faster data collection; second, the
drive-train systems can exhibit variability, providing the op-
portunity to train and evaluate robust models; and finally, the
most recent data collected includes recordings of vibration and
acoustics, enabling the evaluation of acoustic data as a poten-
tial alternative to vibration data.2, 46 This dataset was previ-
ously evaluated for the remaining useful life estimation task
using a set of engineered features, as well as for TL across
different operating conditions.42 At the time of writing, the
SMLL dataset consists of 145 bearing tests; however, data col-
lection is ongoing. Out of these 145 test runs, there are acoustic
recordings for 23 tests. For some of the recordings, multiple
bearings are tested at the same time, which has an impact on
the acoustic recordings. This is done intentionally, as one of
the aspects of the SMLL platform is the ability to collect data
in parallel. Additionally, this allows the generation of more
challenging scenarios for the design and evaluation of PdM
solutions. From the 23 tests with acoustic recordings, 7 tests
are performed with a secondary test running in parallel.

Fig. 3 shows the testing station. The station is covered by
a protective plastic to reduce the environmental noise. Two
microphones are oriented towards the bearing test stations, one
within the enclosure (internal) and one outside (external).

5.1. Source and Target Datasets
This research focuses on the transfer from the vibration

modality, which has abundant high-quality data, to the acous-
tic modality, which has less data and compromised quality due
to environmental noise. Certain bearings are omitted either be-
cause they were tested under loads or speeds for which only a
single bearing is available or due to problems with data quality.
It’s worth noting that the full SMLL dataset contains additional
bearings for which vibration data is available but not acoustic
data. However, this additional data was not considered for this
research.

Figure 3. SMLL setup

Table 1. Summary of the dataset and experiment conditions.

Bearing type FAG 6205-C-TVH

Initial condition
– Healthy: 2

– Indented 15 (400 ± 25 µm)

Stop condition
– Healthy: 2 hrs after stable temperature
– Indented: Vibrations exceeding 20 g

Sampling rate 50 kHz
Acquisition
frequency

Every second

Operating speed
– Fixed: 3 (2 at 2,000 rpm, 1 at 1,900 rpm)
– Sawtooth: 14 (from 1,000 to 2,000 rpm)

Operating load 2 kN

The final dataset selection consists of 17 bearing recordings
tested under a fixed load of 2 kN. Out of these tests, 3 were con-
ducted at a fixed speed (2 at 2,000 rpm and one at 1,900 rpm),
while the rest followed the saw-tooth speed profile. Out of the
17 bearings, 2 were not indented at the beginning of the test
and did not fail at the end of the test (which had a duration of
2 hours). Lastly, out of the 14 tests with a saw-tooth profile,
7 are double-tests. Table 1 provides a summary of the dataset
and lists the number of bearings per condition.

For each test, only the initial 35% of the samples are used for
training, validation, or testing, with a maximum of 800 sam-
ples (equivalent to approximately 2 hours and 13 minutes).

5.2. Data Collection
All tests use FAG 6205-C-TVH model bearings. Tests are

conducted with two different speed profiles and varying initial
conditions. Test speed can be either constant or follow a saw-
tooth profile. Constant speeds are fixed at either 1,900 rpm
or 2,000 rpm. In the saw-tooth profiles the speed varies from
1,000 rpm up to 2,000 rpm. Tests with a saw-tooth profile
begin at a speed of 1,000 rpm and increase in increments of
100 rpm. Each speed is kept constant for 60 s, and once the
speed reaches 2,000 rpm the speed is set back to 1,000 rpm.
The load for the tests is fixed at 9 kN. The initial condition
indicates whether the bearing is indented at the start of the
test. The indentations of the bearings are meant to acceler-
ate degradation. The indentation diameters are within 400 ±
25 µm. These indents are small enough for the bearing to be
considered healthy at the beginning of the test but significant
enough to ensure that degradation begins within a few hours.
The stopping condition corresponds to the moment when peak
vibrations reach a magnitude of 20 g for indented bearings or
2 hours after temperature stabilizes for not-indented bearings.
Fig. 4 shows examples of damaged bearings after the acceler-
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(a) Bearing A43.

(b) Bearing A47.

Figure 4. Examples of bearings’ damage at the end of the tests.

ated life tests. Finally, some of the tests are conducted with a
second healthy bearing tested in the adjacent drive-train. This
is done in order to generate additional noise that can interfere
with the recording and generate more challenging scenarios.

Tests are measured with vibration sensors, in addition to an
array microphone for the most recent tests. The vibration and
acoustic signal are sampled at 50 KHz.

6. METHODOLOGY

This section discusses first the theory behind the spectro-
gram features and the selected feature representation, followed
by the details concerning the architecture selection and param-
eter tuning, and the steps followed for validation and testing.

6.1. Features Across Domains
In order for UTL techniques to succeed, there needs to be

underlying shared information across domains. It is the ex-
pectation that the spectrogram representation of the data from
source and domain share information about the bearing con-
dition. Sounds are mechanical vibrations that travel across a
medium. When a sound changes from medium there is no
change in its frequency. Eq. (4) shows the relation between fre-
quency (f ), speed of a sound (v) and wavelength (λ). The fre-
quency of a sound is independent of the propagation medium,
while the speed of sound is defined by the medium, hence, the
change in the sound corresponds to a change in the wavelength
of the sound with respect to the impedance of the medium.
As waves travel from the metal frame into the air (less dense

Figure 5. Vibration (top) and acoustic (top) signals representations as mel
spectrograms. Note how the high-frequency band gets compressed over the
logarithmic scale, and how a considerable attenuation of the signal occurs
when changing the medium.

medium), the sound speed decreases as well as the wavelength.
Therefore, it is to be expected that the characteristic frequen-
cies of the bearing are present in the sound recordings. How-
ever, different distortions in the spectrogram are introduced
such as: attenuation in some frequency bands, shifts in the
phase, introduction of harmonics, and increase in noise. Fur-
thermore, as the microphones are exposed to other machines
that are in operation, external noise is also introduced. In ad-
dition, the relative position of the microphones to the testbed
can also change between tests.

λ =
v

f
. (4)

To summarize, the main distortions are caused by the change
in medium impedance, which causes a drop in the transmitted
energy and introduces harmonics; and external disturbances,
which correspond to events not related to the bearing’s opera-
tion.

6.2. Mel Spectrograms
The vibration signals over non-overlapping windows of

10 seconds are transformed into spectrograms using the short-
time Fourier transform (STFT), and are then log transformed to
obtain the mel spectrogram. This representation is preferred as
it reduces the number of features without a noticeable drop in
accuracy, which in turn allows reducing the number of param-
eters for the models. To reduce the impact of external noises
the mean of the spectrograms over each window of 10 s is used
instead of the full spectrogram. This allows filtering sporadic
noises but does not cancel other noises such as the ones intro-
duced in the double tests. Table 7 in the annexes, summarizes
the data processing steps. Fig. 5 shows the mel spectrogram
representation for a window of 10 s. Note how the high fre-
quency part of the spectrum is compressed (binned). In addi-
tion, note the considerable magnitude difference between the
vibration and the acoustic domain (attenuation).

6.3. Speed Identification
The task that the models need to achieve is the correct iden-

tification of the operating speed during healthy operating con-
ditions. The target is defined as the smoothed one-hot encoded
vector of the speeds. Due to expected similarity in the fre-
quency content between adjacent speeds, the target vector is
softened by a smoothing factor (α). Note that the edge cases
only have one adjacent neighboring speed. Label smoothing
has previously shown to improve the performance via general-
izations.26
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Table 2. Parameter search grid. Details of the feature extractor are detailed in
Table 3.

Parameter Values
2 layers

feature extractor
False: Single layer in feature extractor
True: Two layers in feature extractor

Embedding dimension 64, 128
Dropout rate 0, 0.1, 0.2

6.4. Parameter Tuning and Validation
The selected architecture is an Artificial Neural Network

(ANN). The parameter search is done using 5-times repeated
6-Fold cross-validation over the values shown in Table 2. The
repeated fold procedure is selected to obtain better out-of-bag
(OOB) error estimations by ignoring variations caused by the
network’s weights random initialization. The number of folds
were selected in order to test no more than 3 bearings as OOB
samples per fold. Consider that the folds are intended to be
balanced in the number of bearings each contains, but due
to changes in the test’s lengths, the actual number of sam-
ples varies. The dataset partition with the bearing’s ids and
the dataset size are shown in Annex Tables 8 and 9. In or-
der to keep a consistent unsupervised learning methodology,
the best parameters are selected based on the validation error
over the source domain, as selecting it based on the error over
the acoustic domain would defeat the purpose of a real UTL.
Parameter tuning is only performed for the ReverseGrad and
Coral models. For simplicity, the baselines use the same ar-
chitecture and parameters as the best result found for the Re-
verseGrad. The fine-tuning baseline reuses the model learned
from the baseline and is adapted using the training data of the
target domain.

The loss functions for each model are the following:

1. Baseline model. Categorical cross entropy with class
weights.

2. Baseline using fine-tuning. Categorical cross entropy
with class weights.

3. ReversGrad. Categorical cross entropy with class weights
for labels and binary cross entropy for domains with γ =
10.

4. Coral. Categorical cross entropy with class weights for
labels and coral loss with λ = 10.

For all tests, the validation metric and early stop criterion
is the top-k-categorical accuracy with k = 2 with a patience
of 10 epochs, after which the best found weights are restored
before performing the OOB evaluation. Top-k-categorical ac-
curacy is selected following the same reasoning as the soft-
labeling, which reduces the penalty imposed by making errors
between adjacent speeds.

7. RESULTS AND DISCUSSION

The following section presents the results for the baselines
and the UTL techniques. First the individual results of each
of the TL methods are presented, namely ReverseGrad in Sec-
tion 7.1 and Coral in Section 7.2. These sections describe the
best found parameters for each approach and their maximum
performance. Finally, Section 7.3 presents the results of the
baselines, namely the model with adaptation and the model
with supervised adaptation, which then are compared against

Figure 6. Validation results of the search architecture for the ReverseGrad
experiments. Experiments ordered as in Table 4.

Figure 7. Validation results of the search architecture for the Coral experi-
ments. Experiments ordered as in Table 5.

the TL models. This section highlights the advantages found
and how each model compares against the others.

7.1. ReverseGrad
The results for the parameter search of the ReverseGrad

model are summarized in Table 4 and presented in Fig. 6.
The most significant parameter is the number of layers for
the feature extractor, and to a lesser extent the dropout rate.
However, on the target’s domain accuracy, the embedding size
seems to also have an effect. The best parameter found for
the ReverseGrad model corresponds to a single layer feature
extractor, with a dropout rate of 0.2, and an embedding layer
of 128 nodes. This model gives a top-2 validation accuracy
of 97.65% in the source domain and 74.56% in the validation
target.

7.2. Coral
The results for the parameter search of the Coral model are

summarized in Table 5 and presented in Fig. 7. The parame-
ter search points out that the only significant parameter for the
source’s domain performance is the embedding size, while the
other parameters seem to have no effect on the target’s domain
performance. The best parameter found corresponds to a sin-
gle layer feature extractor, with no dropout, and an embedding
layer of 128 nodes.

Based on the validation error over the source domain, the
Coral method underperforms against ReverseGrad. Meaning
that the coral loss has caused the model to perform worse over
the source domain. In addition, the performance over the target
domain is low over the validation data (55.25%).

7.3. Baselines and OOB Evaluation
Table 6 summarizes the results for the baselines and UTL

techniques over the train, validation, and test for each domain.
The table compares the best-found model for each of the tech-
niques based on the validation performance over the source
domain as presented in the previous section.
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Table 3. Architecture for each model or branch. Each row is the number of nodes at the corresponding level. Layers with * have shapes or operating conditions
dependent on the parameter tuning shown in Table 2.

Model
(or branch)

Baseline
Fine tuning baseline

ReverseGrad (Class head)
Coral

ReverseGrad
(Domain head)

Feature extractor

Input (256,) –
Dense (128,) –

Batch Norm, (128,) –
Optional
Dense*

(128,) if emb. dim. == 128
(64,) if emb. dim. == 64

–

Classifier

Dense* (emb. dim.,) (emb. dim.,)
Dense* (emb. dim./2,) (emb. dim./2,)

Batch Norm. (emb. dim./2,) (emb. dim./2,)
Dropout* (emb. dim./2,) (emb. dim./2,)

Output (10,) (2,)

Table 4. Cross-validation results for the validation error of the ReverseGrad tests. Metric corresponds to Top-2 categorical accuracy. Results have been ordered
based on the source accuracy mean.

2 layers feature Dropout rate Embedding size Val. Source accuracy Standard dev. Val. Target accuracy Standard dev.
True 0.1 64 77.23 11.94 48.77 9.69
True 0.0 64 80.32 15.67 51.50 10.85
True 0.2 64 82.16 11.10 49.84 11.69
True 0.0 128 85.09 8.58 53.65 9.26
True 0.2 128 86.73 12.19 59.18 11.16
True 0.1 128 87.41 7.21 57.27 9.04
False 0.0 64 95.69 3.57 62.72 11.08
False 0.2 64 96.48 2.60 66.36 7.63
False 0.1 64 96.52 3.21 67.52 7.65
False 0.0 128 96.61 3.73 70.94 7.62
False 0.1 128 97.23 2.26 68.66 6.92
False 0.2 128 97.65 2.14 74.58 6.76

To start the analysis, a first reference value for the OOB ac-
curacy is the accuracy obtained from a random guess estimator.
Due to the 2-top accuracy metrics not being evenly distributed,
the expected value is estimated from simulating a 2 million
sample distribution with random guess for the evaluated. The
expected top-2 accuracy for a random guesser is 18.16% with
no significant difference if the class distributions were consid-
ered. All the models evaluated surpass this value, therefore it
is clear that the models have successfully learned meaningful
information from the spectrogram representation.

The first baseline, in which no TL was performed, is able to
generalize correctly and has a good performance for the source
domain. Interestingly, this model also has a good performance
in the target domain (accuracy of 85.51% on the validation and
83.18% on the test). This is a clear indicator that the two do-
mains have relatively small differences. It is likely that the
Batch Normalization layers are able to compensate for part of
the domain shift. The second baseline, the STL model via fine
tuning, achieves as expected the best performance on the target
domain test (93.25%). This value can be seen as a reference of
what would be the best expected accuracy for the UTL mod-
els. Note that the standard deviations in the OOB tests for both
source and domain are considerably large, even after having
performed repeated folds to get a better estimate. This points
to considerable heterogeneity between different tests.

ReverseGrad The results for ReverseGrad indicate an ac-
curacy of 91.73% for the test data in the target domain, which
aligns with the source accuracy and is notably close to the per-
formance of the STL baseline. It is worth noting that the stan-
dard deviations over the test data are relatively large (greater
than 10%). An aspect that needs to be further investigated con-
cerns the relatively poor performance over the validation data

on the target (74.58%). This discrepancy may be attributed
to the small dataset size and potential imbalance in the folds.
Note that the partitions were done at random but due to the
small number of tests it can be prone to imbalanced folds.

Despite these limitations, the ReverseGrad model success-
fully transfers acquired knowledge from the source to the tar-
get domain. This is evident when comparing the improvements
in the source domain’s accuracy to the corresponding increases
in the target domain’s accuracy, as shown in Fig. 6.

Coral The results for Coral demonstrate an accuracy of
87.27% for the test data in the target domain. This perfor-
mance is notably lower than that achieved by the ReverseGrad
method (91.73%), yet it surpasses the baseline without transfer
(83.18%). It is hypothesized that the poor performance may be
attributed to a limited parameter search. Furthermore, it is pos-
sible that the Batch Normalization layers are interfering with
the Coral loss.

In summary, it is essential to emphasize that the substantial
variability in the target domain indicates the persistence of sig-
nificant heterogeneity within that domain. This heterogeneity
contributes to the observed large standard deviations in perfor-
mance estimates.

8. FUTURE STUDIES

This study serves as an illustrative example of applying
unsupervised TL to transfer models between different sensor
modalities without requiring labeled data. However, in practi-
cal applications, machine speed is typically a user input. This
raises the question of what practical benefits can be derived
from the ability to predict the operating speed.

An early objective of this research was the identification of
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Table 5. Cross-validation results for the validation error of the Coral tests. Metric corresponds to Top-2 categorical accuracy. Results have been ordered based
on the source accuracy mean.

2 layers feature Dropout rate Embedding size Val. Source accuracy Standard dev. Val. Target accuracy Standard dev.
True 0.2 64 78.56 7.03 50.87 5.60
True 0.0 64 78.78 7.59 50.58 5.66
True 0.1 64 79.80 6.83 50.89 4.63
False 0.0 64 80.64 5.91 51.35 5.07
False 0.2 64 80.90 7.24 52.56 4.82
False 0.1 64 81.34 6.15 53.02 5.47
True 0.0 128 83.63 5.85 55.36 6.02
True 0.2 128 84.18 5.94 53.92 4.80
True 0.1 128 84.90 6.51 53.64 4.70
False 0.2 128 86.56 4.66 55.75 4.40
False 0.1 128 87.78 4.05 57.36 5.85
False 0.0 128 87.85 4.57 55.25 6.13

Table 6. Mean top-2 accuracy and standard deviation in parenthesis for the train, validation, and out-of-bag test. The training metric is not evaluated at the target,
as the information is not available during the co-training. Validation is provided for reference but in practice it is neither available. Fine-tuning results at the
source correspond to those of the baseline.

Model Source (Vibration) Target (Acoustic)
Training Validation Test Training Validation Test

Baseline 96.26 (0.30) 99.22 (0.58) 92.03 (8.99) N/A 85.51 (3.99) 83.18 (8.94)
Fine-tuning – (–) – (–) – (–) N/A – (–) 93.25 (7.73)

ReverseGrad 95.50 (0.03) 97.65 (2.14) 91.64 (9.11) N/A 74.58 (6.76) 91.73 (9.07)
Coral 74.87 (2.65) 87.85 (4.57) 88.18 (11.10) N/A 55.25 (6.13) 87.27 (11.10)

anomalies in an unsupervised way. The original idea was to
use the embedding generated after the feature extraction stage
for a downstream task of single-class classification. The detec-
tion then could be reported as the moment of degradation on-
set. However, the changes between two speeds generate states
which, although not anomalous, differ from the learned em-
bedding and are immediately labeled as anomalies (early false
positive). The results of this evaluation were insufficient and
are not reported here.

To address these questions and advance this research, two
paths for future research are proposed:

• Condition based monitoring based on the deviation be-
tween the predicted and the known speed. This output can
be seen as a deviation between the expected speed and the
actual and can be used in order to diagnose possible errors
in the machine such as dose caused by component wear
and lubricant quality.

• Anomaly detection by means of a single-class classifier.47

The goal is to use the embedding layer that represents all
the healthy operation for all possible speeds and then use
the embedding for the downstream task.

• Evaluating the external microphone. This research used
the audio recordings within the enclosure with the goal of
reducing the impact of environmental noise, which is still
recorded and has been proven to be a challenge. In order
to create realistic solutions for PdM, it would be required
to use the data of the external microphone, which is likely
to contain more noise.

9. CONCLUSION

This research presents the first study of TL across different
non-image modalities in the context of PdM. It opens the pos-
sibility of performing monitoring tasks of mechanical compo-
nents using microphones, which offer advantages over vibra-
tions sensors in terms of sensor costs and ease of deployment.
To obtain better predictive models for the acoustic domain, the

information of the vibration data is used in a transfer learning
scenario. The evaluated methodologies show different degrees
of performance. The performance of the ReverseGrad method
is almost as good as the fine tuning approach (top 2-categorical
accuracy of 91.73% against 93.25%). On the other hand, the
results of the Coral technique were mixed, having a low per-
formance on validation accuracy and slightly above the base-
line without transferal. The poor performance could be caused
by not conducting a thorough search in parameters or conflicts
between the batch normalization layers and the coral loss func-
tion. It is likely that a more extensive parameter search could
yield better results for the Coral model.

This research presents a first study of unsupervised TL tech-
niques for non-image modalities with the goal of creating em-
beddings that can summarize healthy behavior of bearings.
This is a first step towards unsupervised transferal for predic-
tive maintenance applications.
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ANNEX

See Tables 7, 8, 9 on the next page.
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Table 7. Pre-processing steps.

Step Parameters used

Data capturing
Vibration and acoustic data

collected at 50 kHz

Filtering
Bandpass Butterworth filter (order 5)

with cutoffs at 500 and 12 kHz
Data windowing Non-overlapping 10 s windows

Spectrogram
Hann windowing with of segments

with length of 0.6 s with 50% overlap

Mel transform

256 mel-bands.
Linear bands up to 1 kHz,

with logarithmic bands
for higher frequencies.

Bands defined by:
mel = 2595 ∗ log 10(1 + f/700)

Table 8. Fold divisions and corresponding bearing ids. Due to small delays
between the vibration recordings, there may be small differences in the sample
size between domains for the same bearing.

Fold Train Train Val Source Test Source
Source Target Val Target Test target

1

A83 A85
A147 A148
A150 A154
A155 A158

A181

A184
A146
A151
A152
A156

A147
A148
A181

A149
A153
A182

2

A84 A85
A146 A148
A151 A152
A153 A154

A158

A83
A149
A155
A181
A182

A148
A151
A155

A147
A150
A156

3

A83 A146
A150 A151
A153 A154
A158 A181

A182

A85
A147
A148
A149
A156

A147
A148
A151

A84
A152
A155

4

A84 A85
A147 A148
A149 A150
A155 A158

A182

A146
A152
A153
A154
A156

A147
A149
A156

A83
A151
A181

5

A83 A84
A85 A149

A150 A153
A155 A156

A181

A147
A151
A152
A158
A182

A147
A151
A181

A146
A148
A154

6

A146 A147
A148 A149
A150 A151
A152 A153

A156

A83
A84

A154
A155
A181
A182

A149
A153
A182

A85
A158

Table 9. Sample size for each fold.

Fold Training Training Val. source Test source
# source target Val. target Test target
1 4935 1997 1155 1451
2 4780 1971 1503 1632
3 4100 2483 1503 1800
4 5068 2186 1800 1129
5 4560 2652 1452 1171
6 4720 2463 1451 1200
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