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A B S T R A C T

The visual interpretation of electrocardiogram (ECG) data is driven by human pattern recognition and requires
in-depth medical knowledge. Although state-of-the-art deep learning models can automate and improve ECG
feature extraction and analysis, they face deployment challenges, particularly on medical edge devices, due
to their extensive computational demands and large parameter counts. To address these limitations, this
work introduces ECGencode, a novel deep learning feature encoder optimised for ECG data. ECGencode
is characterised by its intuitive, compact, and expert-inspired architecture, drawing from the Filter Bank
Common Spatial Patterns method traditionally used in EEG signal analysis. It leverages depthwise and separable
convolutions to provide state-of-the-art analysis performance at a fraction of the computational cost. Designed
for intuitive model configuration and providing a latent space that retains the structure of an ECG, ECGencode
can be incorporated into a wide variety of ECG analysis models. Furthermore, a novel spatial Gaussian noise
regularisation technique is introduced, promoting the learning of more generalisable features. ECGencode
stands out for its reduced computational requirements, using only 3.79% of the trainable parameters and
12.39% of the FLOPs compared to the benchmark model for normal sinus rhythm atrial fibrillation detection
and new-onset prediction. Furthermore, an LSTM-extended ECGencode model matches the performance of
leading multi-label classification models with a tenfold reduction in parameters. These attributes position
ECGencode as a highly efficient tool for ECG analysis, with the potential to facilitate its adaptation in resource
constrained cardiac diagnostics and monitoring settings.
1. Introduction

The electrocardiogram (ECG) is a fundamental diagnostic tool in
clinical practice, favoured for its cost-effectiveness, non-invasive na-
ture, and straightforward data acquisition process (Faruk et al., 2021).
A standard 12-lead ECG, providing a 10-second recording at high
temporal resolution, offers an intricate temporal and spatial portrait of
cardiac electrophysiology. This diagnostic modality is integral for the
early detection and management of cardiac anomalies, playing a vital
role in the timely initiation of therapeutic interventions.

However, the visual interpretation of ECGs is a demanding task,
requiring significant medical expertise and is inherently limited by
human pattern recognition capacity. These limitations have motivated
the development of automated ECG analysis methods, with machine
learning algorithms increasingly becoming the method of choice (Gilon
et al., 2023; Mincholé et al., 2019; Petmezas et al., 2022; Sau & Ng,
2023; Somani et al., 2021). Owing to their data-driven approach, ma-
chine learning algorithms, and deep learning (DL) models in particular,
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can learn complex features from raw ECG data. This has allowed them
to surpass traditional methods in tasks such as arrhythmia classification
and rhythm analysis (Mincholé et al., 2019; Petmezas et al., 2022; Sau
& Ng, 2023; Somani et al., 2021).

A key benefit of DL models is the fact that they can be run fully
autonomously on both stored and live ECG recordings. This makes them
ideal for integration in clinical decision support systems, where they
can help clinicians in their complex decision-making processes (Min-
cholé et al., 2019; Petmezas et al., 2022; Sau & Ng, 2023). These models
can perform multi-label classification on a variety of diagnostic ECG
statements, including rare arrhythmia, offering potentially valuable
second opinions for clinical diagnostics. Furthermore, DL models have
shown promise in enhancing patient screening and risk stratification,
challenging conventional risk scores like the CHARGE-AF score for
atrial fibrillation (AFib), which primarily rely on tabular data from the
Electronic Health Record (EHR, Alonso et al., 2013). This follows from
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the initial assumption that no indicative patterns of AFib are observable
on the ECG before AFib onset or during normal sinus rhythm (NSR).
However, recent studies reveal that DL can predict new-onset AFib or
identify AFib from NSR ECGs with greater accuracy than traditional
methods, suggesting their utility as risk score and in selecting patient
subgroups for extended screening (Attia, Noseworthy, et al., 2019;
Christopoulos et al., 2020; Gruwez et al., 2023; Raghunath et al., 2021;
Sau & Ng, 2023). Moreover, DL has been utilised to detect markers of
systemic diseases such as COVID-19 in ECG data, showcasing its ability
to extend beyond traditional cardiac diagnostics (Sakr et al., 2023).

Nevertheless, widespread clinical application of advanced DL mod-
els for ECG analysis is still limited, not least due to their ‘‘black-box’’
nature, which complicates their direct use as standalone diagnostic
tools (Mincholé et al., 2019; Petmezas et al., 2022; Sau & Ng, 2023;
Somani et al., 2021). While acknowledging this restriction, DL mod-
els, when used appropriately, can still significantly enhance decision
support systems by augmenting clinical judgement with previously
unavailable risk scores and insights into potential, overlooked diag-
noses (Attia, Noseworthy, et al., 2019; Christopoulos et al., 2020;
Gruwez et al., 2023; Raghunath et al., 2021; Sau & Ng, 2023; Strodthoff
et al., 2021). However, other deployment challenges persist, in part
due to the reliance on complex, parameter-heavy models like residual
networks (ResNets) which are not inherently optimised for ECG signal
analysis.

Firstly, the number of computational operations these complex
state-of-the-art (SOTA) models need to perform during inference, ex-
pressed in floating-point operations (FLOPs), is enormous. This makes
them significantly resource-intensive, rendering them impractical for
use in resource-constrained environments, such as inference on low-
powered medical edge devices without GPUs (Phukan et al., 2023).
Secondly, the high parameter counts of these models combined with the
limited and imbalanced availability of (public) ECG datasets increases
the risk for various unfavourable training behaviours. This includes
the risk of overfitting and bias learning, requirement of a significant
amount of costly VRAM for GPU training, slow gradient calculation due
to the many trainable parameters and thus a slower training process,
and others (Buber & Diri, 2018; Gyawali, 2023; Liao et al., 2022; Min-
cholé et al., 2019; Phukan et al., 2023; Somani et al., 2021). Thirdly, as
these models are adopted from other fields and not specifically tailored
to ECG analysis, there is no intuitive meaning as to what the model
configuration parameters mean in relation to the ECG analysis. This
results in the choice of a default, non-optimised model configuration or
the need for computationally very expensive and time-consuming con-
figuration tuning, a process which can increase the risk of overfitting,
effectively decreasing generalisation performance (Liao et al., 2022).
Fourthly, the latent space representation of the ECG signal using these
models has no intuitive meaning and is often large in size, can capture
unnecessary redundancies and makes modifications or extensions to
these architectures a challenging task (Mincholé et al., 2019; Somani
et al., 2021). Finally, given the nature of deep SOTA models used,
interpretability of the learned weights and resulting predictions is hard
and often limited to general post hoc methods such as gradient-based
class activation maps (Chattopadhay et al., 2018; Jiang et al., 2021;
Selvaraju et al., 2020; Wang et al., 2020) and saliency maps (Simonyan
et al., 2014; Smilkov et al., 2017).

In response to these challenges, this paper introduces ECGencode:
a compact and computationally efficient DL feature encoder made
specifically for ECG signals. ECGencode serves as a building block for
the creation of various model architectures to perform ECG-specific
tasks. It can be used to transform a high dimensional raw input ECG to
a smaller-sized latent space with learned features relevant to the task,
whilst offering the following benefits:

ECG Specific, Compact, and Expert-Inspired Architecture: EC-
Gencode efficiently transforms high-dimensional raw ECG data into
a compact, information-rich latent space, preserving the structure of
2

an ECG. The novel DL model architecture, inspired by the expert-
approved Filter Bank Common Spatial Patterns (FBCSP, Ang et al.,
2008) technique, introduces a novel Spatial Gaussian Noise layer for
regularisation across both lead and channel dimensions.

Computationally Efficient and Low-Parameter Design: Charac-
terised by its low parameter count and the utilisation of depthwise
and depthwise separable convolutions, ECGencode delivers SOTA-level
performance with significantly reduced computational demands. A bi-
nary classification model incorporating ECGencode, designed for NSR
AFib detection and new-onset AFib prediction, achieves comparable
results to SOTA models while requiring over twenty times fewer pa-
rameters and reducing FLOPs by tenfold. Such efficiency facilitates
deployment on resource-constrained edge devices, without reducing the
classification performance.

Intuitive Model Configuration and Interpretable Architecture:
ECGencode’s DL architecture supports intuitive model configuration
tuning, closely aligned with ECG signal characteristics, and produces an
interpretable latent space mirroring the ECG leads over time structure.
Each layer is configured for a distinct, visually interpretable task, from
temporal frequency filtering to spatial reduction into augmented leads,
enriching model transparency and understanding.

Versatile By Design: Deliberately proposed as a feature encoder
rather than a complete model, ECGencode is highly adaptable, sup-
porting diverse configurations and extensions tailored to specific ECG
analysis tasks. Its flexible and easy-to-adopt nature makes ECGencode
an ideal building block for developing clinically viable DL models,
closing the gap between the performance of computationally expensive
models and the resource constraints found in medical edge devices.

Many of these points relate to the computational efficiency of a
model, a key benefit of ECGencode, which encompasses several as-
pects. Computational efficiency is primarily measured by the FLOPs
count, indicating CPU cost when GPUs are unavailable, as is often
the case for medical edge devices. Additionally, the parameter count
denotes the number of weights that need to be stored, impacting
memory cost. A model with fewer trainable parameters is also less
susceptible to overfitting, as it requires fewer weights to be learned,
potentially leading to better performance with less data and shorter
training sessions, both of which enhance computational efficiency in
terms of training cost. ECGencode’s intuitive parameterisation avoids
the need for computationally expensive grid searches to determine op-
timal hyperparameters, further improving training efficiency. Finally,
extensions using ECGencode benefit from the computationally efficient
reduction of a high-dimensional raw ECG input to a compact latent
space, ensuring lower computational cost in subsequent processing
stages.

The structure of the paper is as follows. Section 2 provides an
overview of the related work. First, a brief history of ECG signals and
the transition towards automated ECG analysis is provided. Next, the
most common DL architectures used for ECG analysis and available
model interpretability techniques are discussed. Afterwards, the issue of
computational efficiency for these complex models is explained in more
detail and existing literature on improved computational efficiency is
highlighted. Finally, based on these topics and the identified gaps,
ECGencode is positioned as a tool to intuitively build computation-
ally efficient DL ECG analysis models. In Section 3, the architecture
of ECGencode is detailed, highlighting its computational efficiency
and the novel ECG-specific normalisation layers that enhance model
generalisability. Furthermore, the analogy with the traditional FBCSP
framework is explored, providing a comprehensive understanding of
the model’s layers and learned weights. This visual interpretation of
the architecture is further elaborated as well. Section 4 presents a
thorough evaluation of ECGencode through two models incorporating
ECGencode. Three binary ECG classification tasks are evaluated using
ECGencode model 1: detection of AFib-related patients, detection of
AFib during normal sinus rhythm (NSR) and prediction of AFib before

its first onset. Additionally, a fourth task employs ECGencode model
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2, extended with LSTM capabilities, for multi-label ECG classification.
For these evaluations, the PTB-XL (Goldberger et al., 2000; Strodthoff
et al., 2021; Wagner et al., 2020, 2022) and CODE-15% (Lima et al.,
2021; Ribeiro et al., 2021, 2020) open-source data sets are utilised. The
results underscore ECGencode’s computational efficiency, its adapt-
ability for various tasks, and its ability to match the performance of
SOTA models with orders of magnitude fewer parameters and FLOPs.
Section 5 reflects on the wider impact of ECGencode for automated
ECG analysis. It discusses the role of ECGencode as a highly suitable
DL feature encoder for diverse ECG analysis applications, motivated by
the obtained results. The potential for its integration in ECG analysis
is explored, primarily due to its computational efficiency and minimal
resource demands. Finally, Section 6 summarises the main conclusions
of this research and discusses interesting future work.

2. Related work

Automated ECG analysis has evolved significantly since its inception
in the early 1960s, leading to widespread adoption in both clinical
and consumer-grade devices (Macfarlane & Kennedy, 2021; Petmezas
et al., 2022). Modern medical ECG acquisition devices and even smart
wearables now commonly feature automated analysis, employing a
variety of rule-based, expert-derived algorithms to diagnose heart con-
ditions (Faruk et al., 2021; Macfarlane & Kennedy, 2021; Musa et al.,
2023).

The recent growth of the Internet of Medical Things has led to a
rapidly growing availability of medical data, including ECG recordings
linked with patients’ EHRs and other metadata (Musa et al., 2023). This
increase in available data has caused the rapid development of new
automated ECG analysis methods, with deep learning (DL) becoming
the preferred approach, outperforming traditional methods in various
aspects (Jaworski et al., 2022; Mincholé et al., 2019; Musa et al., 2023;
Petmezas et al., 2022; Sau & Ng, 2023; Somani et al., 2021). DL’s main
advantage is its ability to automatically extract features, eliminating the
need for predetermined expert diagnosis rules and manual feature se-
lection (Macfarlane & Kennedy, 2021; Sau & Ng, 2023). This capability
of automatic feature learning helps to uncover medical conditions or
their precursors not visible through conventional analysis, expanding
diagnostic capabilities and potentially enabling early disease detection
and screening (Attia, Noseworthy, et al., 2019; Sau & Ng, 2023).

Whilst the field is rapidly evolving, some general DL issues as well as
specific medical adaptation issues are still present. This section presents
some of the most relevant issues and how they are currently handled
in literature.

2.1. Interpretability of deep learning in ECG analysis

DL’s capability to automatically learn features from raw ECG data
is both its biggest strength and its biggest weakness, as it introduces
the black box problem (Ayano et al., 2023; Hicks et al., 2021; Musa
et al., 2023; Petmezas et al., 2022). The black box problem refers to the
decision-making process of these DL models, which with their hundreds
of thousands of parameters, remains opaque, lacking a clear inter-
pretation or explanation. In healthcare, where such explanations for
diagnoses are crucial, this opacity raises concerns and limits widespread
adoption, especially for the use of these models as a stand-alone diag-
nostic tool (Hicks et al., 2021).

In response, various post hoc methods to provide some form of
interpretability to a trained DL model have been proposed. Among the
most popular in ECG research is post hoc visual explanations, including
saliency maps (e.g., vanilla saliency, SmoothGrad) and gradient-based
class activation maps (e.g., ScoreCAM, LayerCAM, GradCAM, Grad-
CAM++), where a heatmap highlights areas in the input ECG that
influence the prediction most (Chattopadhay et al., 2018; Jiang et al.,
2021; Selvaraju et al., 2020; Simonyan et al., 2014; Smilkov et al.,
2017; Wang et al., 2020). This allows clinicians to focus their review on
3

a specific portion of the ECG and potentially uncover new diagnostic
markers. Some of these general DL techniques have seen adaptation
specifically for ECG analysis models, with ECGradCAM by Hicks et al.
(2021) being a popular example. For more information on interpretabil-
ity techniques in ECG analysis, see the review article by Ayano et al.
(2023).

It is important to note that even without specifically addressing
the black box issue, deep learning models can still offer valuable
support in clinical decision-making. They can predict the likelihood
of conditions such as arrhythmias or future cardiac events, guiding
closer monitoring for patients at risk in a setting where no traditional
risk scores are fit for determining a group of patients that should
be screened (Christopoulos et al., 2020; Raghunath et al., 2021; Sau
& Ng, 2023). Furthermore, they can simply bring potentially missed
arrhythmia to a clinician’s attention, serving as a valuable second
opinion or helping prioritise patient data for review, without providing
a definitive and final diagnosis (Ayano et al., 2023).

2.2. Common model architectures for ECG analysis

Convolutional Neural Networks (CNNs) are the most commonly
used type of architecture for DL ECG analysis. For the majority of
works, simple CNN architectures with alternating convolution and
pooling layers are used, although the more sophisticated ResNets which
were designed to tackle the vanishing gradient problem in deep convo-
lutional networks are becoming more popular (Jaworski et al., 2022;
Petmezas et al., 2022; Sau & Ng, 2023; Somani et al., 2021).

Given the sequential nature of ECG data, Recurrent Neural Networks
(RNNs) have been proposed for complex ECG analysis tasks (Bozyigit
et al., 2020; Petmezas et al., 2022). In particular, Long Short-Term
Memory (LSTM) units and Gated Recurrent Units (GRUs) are popular
RNN options for ECG analysis. However, their complexity often leads
to overfitting, challenging their superiority over ResNets despite the-
oretical benefits for time-series data (Bozyigit et al., 2020; Petmezas
et al., 2022). CNN-LSTM combinations, which first compress ECG data
into a manageable latent space via a CNN architecture before ap-
plying RNN analysis via LSTM units have proven beneficial in some
applications (Abdullah & Al-ani, 2020; Alamatsaz et al., 2024).

These model architectures are adopted from other fields, predom-
inately the field of image processing, meaning they are not explicitly
tailored for ECG analysis which introduces several issues. The lack of
intuitive correlation between model configuration parameters and ECG
signal complexity, such as the amount of residual blocks in a ResNet or
the kernel size of a CNN, often necessitates empirical, computationally
intensive model tuning. This complicates the optimisation process,
which often leads to the use of non-optimised default parameters or
an optimisation process which increases the risk for overfitting or
bias learning (Jaworski et al., 2022; Liao et al., 2022). For medical
professionals, who may be less familiar with deep learning intricacies
but have proven significant contributions to the field, this issue is
even more pronounced. Petmezas et al. (2022) provide a more detailed
overview of commonly used DL architectures for ECG analysis.

2.3. Computational efficiency optimisation

Besides the challenges with model architectures not being optimised
for ECG analysis, these models also tend to be computationally de-
manding. They often have hundreds of thousands of parameters and
require significant amounts of FLOPs, impacting both the training and
inference phases. During training, especially with imbalanced datasets
common in ECG analysis, a large number of parameters increases the
risk of overfitting. It also makes the training process longer and requires
more storage and VRAM during GPU training, which could cause
an economic barrier to entry for smaller research groups or clinical
settings (Sharir et al., 2020; Xu & Du, 2023). For inference, these
models require more resources and lead to longer processing times
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and increased battery usage, limiting their use in resource-constrained
environments like medical edge devices (Phukan et al., 2023).

Current approaches to enhance computational efficiency in deep
learning models often employ post-training operations, focusing on
reducing FLOPs and parameter count for the final inference model,
but starting from a trained model of considerable complexity with all
risks and requirements associated. Knowledge distillation, or teacher–
student modelling, is one such strategy, having been applied to ECG
analysis to reduce a 12-lead model to a more computationally man-
ageable single-lead model (Qin et al., 2023; Sepahvand & Abdali-
Mohammadi, 2022). Similarly, multistage pruning has effectively re-
duced the complexity of trained ECG models (Xiaolin et al., 2021).
However, these methods inherit the limitations of the initial complex
models they are based on. This includes the potential of mimicking
unwanted behaviour which results from overfitting whilst requiring
many computational resources and enough data for training the initial
complex model as well as a computationally expensive hyperparameter
grid search to find optimal model configuration for this initial model.
Other approaches start directly from a single-lead or even a single
heartbeat as input to learn a more compact model, but the found
computational efficiency gains largely result from alterations to the
input data rather than intrinsic architectural innovations (Alfaras et al.,
2019; Dubatovka & Buhmann, 2022; Khan et al., 2023).

Architectural design for improved computational efficiency has
been explored in the general field of deep learning and has seen
some interest in the field of ECG analysis. Densely connected convo-
lutional networks (DenseNets), for example, require fewer parameters
compared to traditional ResNet-based models, mitigating overfitting
risks (Huang et al., 2017). In the context of AFib detection, a DenseNet-
based model has demonstrated comparable performance to SOTA mod-
els with only 69,087 parameters (Cai et al., 2020). While the parameter
reduction is notable, DenseNet-based models typically still entail high
computational costs in terms of FLOPs due to their deep layered
structure. In contrast, the binary ECG classification model for AFib
detection during NSR and new-onset AFib prediction presented in this
paper (ECGencode model 1) achieves similar performance to SOTA with
merely 8242 parameters and further reduces computational demands
by minimising layer count and using specialised convolutions for a
lower FLOPs count. Recently, a study by Phukan et al. (2023) explored
the use of simpler CNN architectures to reduce computational demands
for deployment on edge devices. However, as discussed in their work
and revealed in the evaluation of Section 4.3, while these architectures
might lower FLOPs, they still maintain a substantial number of param-
eters and fail to match the performance of SOTA models in various
tasks.

The quest for computational efficiency in ECG analysis has also led
to the development of custom chips for running traditional convolu-
tional-based neural networks (Gu et al., 2023). While these offer im-
pressive energy and time efficiency during inference, their require-
ment for specialised hardware, which only supports specific types of
operations, limits their general applicability.

2.4. Positioning of ECGencode in literature

The commonly used DL models for ECG analysis, dominated by
traditional CNNs and ResNets, present several challenges. First, as these
models were not originally designed for the high dimensional ECG
signal analysis nor deployment on resource-constrained environments
such as medical edge devices, they require high computational re-
sources. This includes high FLOPs counts which necessitate more CPU
power for inference and high parameter counts which require more
memory to store the trained model and increase the risk of overfit-
ting. Existing solutions for improving this computational efficiency and
allowing them to be run on medical edge devices either compromise
performance for efficiency, necessitate specialised hardware, start from
4

a complex model with its associated drawbacks, or fail to scale across
different ECG analysis tasks (Cai et al., 2020; Gu et al., 2023; Phukan
et al., 2023). Second, while models like ResNets offer some control
over complexity, such as adjusting the number of residual blocks, these
configurations often lack a direct relationship to the ECG signals or
the specific task at hand. This results in a default, overly complex
configuration, or the requirement of time-consuming, empirical, and
computationally very expensive model optimisation through a hyper-
parameter grid search, which increases the risk of overfitting and bias
learning (Liao et al., 2022). Third, the latent space representations of
the input ECG from these models are large and unstructured with no
straightforward way of being extended. This latent space representation
combined with the deep structure of the commonly used models and
high parameter counts also makes intrinsic interpretation of the learned
parameters hard, if not impossible.

To bridge these gaps, ECGencode is introduced as a versatile and
computationally efficient DL feature encoder, serving as a building
block for a wide possibility of DL ECG analysis models. Based on the
expert-inspired FBCSP approach, it transforms complex ECG inputs into
a manageable latent space that retains the ECG’s structure, suitable for
use and extension in a variety of DL ECG analysis models. Its compact
and computationally very efficient architecture, employing depthwise
and depthwise separable convolutions, allows for the creation of models
with minimal parameters and FLOPs which are applicable for de-
ployment on edge devices without compromising performance. The
introduction of a novel, ECG-specific, Spatial Gaussian Noise regular-
isation technique provides satisfactory generalisation without impact
on inference speed. Furthermore, ECGencode supports intuitive model
configuration and offers interpretability at both the architectural and
parameter levels. Not only does this facilitate researchers to configure
a custom DL model, but it also allows for model-specific visualisations
and some intrinsic parameter interpretation besides existing post hoc
visualisation techniques.

It is noted that unlike pre-trained, general ECG feature encoders,
such as those using self-supervised learning or auto-encoders, EC-
Gencode is crafted as a trainable component for supervised learning
models. This ensures the extraction of task-relevant features, shown to
be generalisable to data sets from other clinics, enabling performance
that matches or surpasses SOTA models while maintaining efficiency
and interpretability (Christ et al., 2018; Del Pup & Atzori, 2023; Gedon
et al., 2021; Jang et al., 2021; Kuznetsov et al., 2021; Liu et al., 2021).

3. ECGencode feature encoder

The challenges outlined in the previous section highlight the need
for a deep learning feature encoder that prioritises computational
efficiency without sacrificing representation capability, while also re-
maining versatile enough through intuitive model configuration param-
eterisation for use in various tasks based on a raw ECG input. To meet
these requirements, this section introduces ECGencode, a compact deep
learning feature encoder designed for standard 12-lead ECG signals.
Despite its minimal use of learning parameters and FLOPs, ECGencode
retains crucial information in its latent space, enabling it to perform
competitively with far more complex models across different problem
settings, as evidenced by the evaluation performed in Section 4.

This section offers a comprehensive overview of the ECGencode
architecture. Section 3.1 discusses the model’s temporal, spatial, and
feature convolutions. To enhance feature generalisability, ECGencode
incorporates ECG-specific normalisation and an ECG-specific novel Spa-
tial Gaussian Noise regularisation technique, which are detailed in
Section 3.2. Section 3.3 presents an analysis of the model’s com-
putational efficiency, revealing a significant reduction in FLOPs and
trainable parameters. The architecture provides options for increasing
model complexity and for including extensions, such as a CNN-LSTM
extension, through intuitive model configuration parameterisation and
a latent space that retains the ECG structure as discussed in Sec-
tion 3.4. Lastly, Section 3.5 explores various ECGencode-specific visu-
alisation techniques, both intrinsic and post hoc, made possible by the

architecture’s novel design.
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Fig. 1. A high-level overview of ECGencode model 1 used for binary ECG classification. This model, and the ECGencode configuration it uses, focus on achieving the highest
computational efficiency possible without significant classification performance loss. The 2D input consists of a standard 10-second 12-lead ECG sampled at 500 Hz, represented
as a 12× 5000 matrix. ECGencode outputs a compact 3D latent space with dimensions 4 × 40 × 4. Binary ECG classification is achieved using a fully connected layer with softmax
ctivation, applied to the 1D flattened latent space. This model’s total parameter count is 8242 and FLOPs count is estimated to be ±83M.
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.1. Compact convolutional architecture for automated ECG feature encod-
ng

Fig. 1 presents a high-level overview of the ECGencode architecture
s configured in a model for binary ECG classification (ECGencode
odel 1). The input consists of a standard 10-second 12-lead ECG

ampled at 500 Hz, represented as a 12 × 5000 2D matrix. ECGencode
ill convert this input to a 3D matrix by adding an additional channel
imension, resulting in a 12 × 5000 × 1 3D matrix that can be
nterpreted as leads × time points × channels. This allows ECGencode
o explicitly retain the 2D structure of the ECG signal throughout its
ifferent layers, resulting in a final latent space of shape 4 × 40 × 4
hich can be interpreted as a signal of 4 augmented leads, 40 time
oints and 4 channels. The final layer of the first ECGencode model
inks this latent space generated by ECGencode to the binary ECG
lassification output through a fully connected layer with softmax
ctivation. In this configuration, the latent space is simply flattened
nto a one-dimensional vector before softmax activation, resulting in
compact model with a total of only 8242 parameters.

ECGencode comprises four sequential components: a temporal con-
olution, a spatial convolution, and two feature convolutions. These
omponents are inspired by the FBCSP method of Ang et al. (2008),
well-established approach in feature engineering for EEG signals. In

BCSP, temporal filters partition the signal into multiple frequency
anks, followed by spatial filters using the Common Spatial Patterns
CSP) algorithm by Koles et al. (1990) to maximise inter-class variance
or each frequency bank. Subsequent feature selection methods like
utual information reduce dimensionality and redundancy, paving the
ay for classifiers such as linear discriminant analysis (LDA, Izenman,
008).

Previous efforts to adapt the FBCSP method for deep learning
ave primarily focused on EEG analysis in brain–computer interface
pplications, such as the EEGNet model by Lawhern et al. (2018)
ommonly used as benchmark. In contrast, ECGencode is explicitly
ptimised for standard 12-lead ECG signals rather than EEG signals and
igh computational efficiency, offering a more compact and efficient
eature encoder compared to EEGNet and its variants (Huang et al.,
020; Lawhern et al., 2018; Riyad et al., 2020; Roots et al., 2020; Wang,
023; Zhang et al., 2022).
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.1.1. Temporal convolution
The temporal convolution component, as shown in Fig. 2, is de-

igned to capture a range of temporal dependencies in the ECG signal.
nspired by the filter banking stage of FBCSP, this convolution features
ernels of varying lengths that process each lead independently to
roduce an output comparable to that of a frequency filter. These
ernels, with dimensions 1 × 16 × 1, 1 × 64 × 1, 1 × 256 × 1, and 1
1024 × 1, capture information at multiple temporal scales: 0.03, 0.1,

.5, and 2 seconds, respectively. Employing kernels of diverse temporal
engths allows ECGencode to capture both high-frequency and low-
requency information. Kernels with a shorter temporal axis focus on
igh-frequency details, whereas those with a longer temporal axis help
n smoothing the signal and capturing low-frequency traits. Whilst the
onger temporal kernels can provide valuable feature extraction, their
se should be considered keeping the desired inference device in mind,
s they can easily blow up the FLOPs count of the model. For example,
he four 1 × 1024 × 1 kernel in ECGencode model 1 are responsible for
ore than 60M out of the total ±83M FLOPs. Due to the high input

ampling rate of 500 Hz, a stride of 8 is applied to downscale the
emporal axis.

Each of these kernel convolutions creates four output channels,
hich are all merged along the channel axis, resulting in an ECG-like

ignal of size 12 × 625 × 16 with temporal alterations based on fre-
uency filtering along the channel axis and a considerably down-scaled
emporal axis. Given that the input ECG only has one input channel,
sing 2D depthwise or 2D depthwise separable convolutions, as ex-
lained in Section 3.3, would not yield any computational or parameter
fficiency gains, explaining the use of standard 2D convolutions in the
emporal convolution component.

.1.2. Spatial convolution
The spatial convolution component, represented in Fig. 3, takes as

ts input the output from the preceding temporal convolution com-
onent. It aims to capture spatial correlations across all twelve ECG
eads, similar to the CSP stage in FBCSP (Ang et al., 2008; Koles et al.,
990). Four independent depthwise 2D convolutions are utilised, each
ith a kernel of size 12 × 1 × 1. This results in four augmented

eads, each synthesised from all twelve original leads. The selection
f four augmented leads serves dual purposes: it both reduces spatial
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a

Fig. 2. In-depth view of the temporal convolution component within ECGencode, configured per ECGencode model 1 specified in Fig. 1. Four distinct standard 2D convolutions
re employed, each with a stride of eight. Kernel sizes vary along the temporal axis: 1 × 16 × 1, 1 × 64 × 1, 1 × 256 × 1, and 1 × 1024 × 1. The outputs of these convolutions

are combined along the channel axis to form the final output.
Fig. 3. In-depth view of the spatial convolution component within ECGencode, configured per ECGencode model 1 specified in Fig. 1. The input for this stage is the output from
the temporal convolution shown in Fig. 2. Four separate depthwise 2D convolutions are employed, each with a kernel size of 12 × 1 × 1, covering all leads. The outputs, termed
augmented leads based on the original twelve leads, are combined along the lead axis to produce the final output.
complexity and aligns with the optimal number of leads for neural
network training found by Lai et al. (2021).

Unlike standard 2D convolutions, which would employ a kernel
of 12 × 1 × 16, each depthwise 2D convolution applies 16 distinct
12 × 1 × 1 kernels to each input channel. Without the use of a depth
multiplier, this yields 16 unique output channels for each convolution.
Combining these outputs along the lead axis produces a final output of
size 4 × 625 × 16. This output maintains the frequency-based temporal
6

variations from the previous stage while reducing the original 12 leads
to four augmented ones. Besides allowing explicit retention of the input
channels, depthwise convolutions also offer computational efficiency
benefits as further explained in Section 3.3.

Before the spatial convolution, lead-based batch normalisation (BN,
Ioffe & Szegedy, 2015) is applied to the output of the temporal convo-
lution. This normalisation facilitates the training of ECGencode and en-
hances the intrinsic interpretability of the spatial convolution’s learned
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Fig. 4. In-depth view of the first feature convolution within ECGencode, configured per ECGencode model 1 specified in Fig. 1. The input originates from the spatial convolution
shown in Fig. 3. This stage employs a depthwise separable convolution, with the depthwise convolution using a kernel of 1 × 32 × 1 and a stride of eight. The pointwise convolution
has a kernel of 1 × 1 × 16 and produces four output filters.
Fig. 5. In-depth view of the second feature convolution within ECGencode, configured per ECGencode model 1 specified in Fig. 1. The input is the output of the first feature
convolution depicted in Fig. 4. A depthwise separable convolution with a kernel of 1 × 8 × 1 and a stride of two is used. The pointwise convolution has a kernel of 1 × 1 × 4
nd four output filters.
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eights, as detailed in Section 3.2. The output from the spatial con-
olution block is activated using the Exponential Linear Unit (ELU)
unction, which introduces non-linearity into the network and ad-
resses the vanishing gradient problem (Clevert et al., 2016). It is note-
orthy that the preceding temporal convolution intentionally omits
on-linearity as it increases the computational complexity without im-
roving performance, aligning with the design decisions of the EEGNet
rchitecture (Lawhern et al., 2018).

.1.3. Feature convolutions
The feature convolutions in ECGencode serve to further refine and

ompact the latent space. This stage automates the traditional process
f manual feature extraction that follows the application of FBCSP,
earning a final latent space directly from the data. Fig. 4 provides
etails on the first feature convolution, which uses a depthwise separa-
le convolution to achieve computational efficiency while generating
more compact feature representation. Specifically, the depthwise

onvolution employs a kernel of 1 × 32 × 1 with a stride of eight,
esulting in an output of dimensions 4 × 79 × 16. A subsequent
ointwise convolution with a kernel of 1 × 1 × 16 produces four output
ilters, leading to an output of size 4 × 79 × 4.

The second feature convolution, shown in Fig. 5, builds upon the
utput of the first. It also employs a depthwise separable convolution
ut with a kernel of 1 × 8 × 1 and a stride of two. This convolution
etains four output filters, yielding a final latent space of dimensions
× 40 × 4.

Depthwise separable convolutions, as further explained in Sec-
ion 3.3, contribute to the computational efficiency of ECGencode
hile leveraging cross-channel information to construct the final latent

pace. Both feature convolutions also incorporate channel-based BN
ollowed by an ECG-specific novel Spatial Gaussian Noise regularisation
echnique, which is further discussed in Section 3.2. This regularisation
mproves both the stability and generalisability of ECGencode during
raining. While the first feature convolution continues to use the ELU
ctivation function, the second employs a sigmoid activation function.
he sigmoid activation ensures that all features in the final latent
7

a

pace lie within the 0 to 1 range, beneficial for contexts requiring a
robabilistic interpretation of these features.

.2. ECG specific normalisation and regularisation

ECGencode incorporates two techniques to enhance training stabil-
ty and performance: Batch normalisation (BN) on different axes and a
ovel spatial Gaussian noise regularisation technique. Additionally, the
ata used in this study has undergone minimal preprocessing through
CG-device-specific normalisation, as discussed in Section 4.1.

.2.1. Different axis batch normalisation
BN plays a significant role in the spatial and feature convolution

locks of ECGencode. During training, BN normalises its output over a
pecified axis using the mean and variance statistics computed over a
ini-batch of training samples. During inference, the model uses a mov-

ng average of these statistics, obtained during training, instead (Ioffe
Szegedy, 2015).
By mitigating the internal covariate shift problem, BN facilitates

aster and more stable learning, while also reducing reliance on specific
eight initialisation choices. Additionally, it provides a form of implicit

egularisation, thus limiting the risk of overfitting (Luo et al., 2019).
ue to its benefits and low computational cost during both training
nd inference, BN is integrated into ECGencode where applicable.

In the feature convolution blocks, BN is performed on the channel
xis (feature maps) as is conventional in literature. However, in the
patial convolution block, where each channel undergoes independent
rocessing through the use of depthwise convolution, a lead axis-based
N is employed. This allows a more intrinsic interpretation of the

earned kernel weights for the spatial convolution, which can aid the
nterpretability.

.2.2. Novel spatial Gaussian noise regularisation
To explicitly enhance regularisation and prevent overfitting while

aving minimal impact on the training speed, ECGencode introduces

novel technique which has been named Spatial Gaussian Noise.
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Fig. 6. Visualisation of data considered for lead-axis-based and channel-axis-based
ormalisation and regularisation.

patial Gaussian Noise, used in the feature convolutions of ECGencode,
ombines concepts from spatial dropout (Tompson et al., 2015) and
aussian noise regularisation.

In spatial dropout, a complete slice of the channel axis in the input
ata is zeroed out with a given probability. This technique is favoured
or time series data like ECG, where neighbouring data points exhibit
trong correlation, making it more effective than regular dropout which
ould randomly zero out individual data points rather than a complete

lice.
However, due to ECGencode’s compact latent space, fully nullifying

n entire slice during spatial dropout can lead to excessive regular-
sation, negatively impacting the learning speed and overall model
erformance. To address this, a custom spatial Gaussian noise regu-
arisation technique is employed. This technique applies multiplicative
aussian noise with a user-defined mean and standard deviation to
alues from a slice in the specified axis with a given probability.
mpirical findings demonstrate that combining regular spatial dropout
sing a low probability followed by the custom spatial Gaussian noise
ith a higher probability yields the most effective regularisation and
eneralisation performance for ECGencode. The spatial Gaussian noise
egularisation for the first feature convolution (Fig. 4) happens on a
ead-axis basis whereas the spatial Gaussian noise regularisation in the
econd feature convolution (Fig. 5) happens on a channel-axis basis.
he difference between which data is considered for the different axis-
ased regularisation is shown in Fig. 6. Notably, as this regularisation
s only performed during training, it has no impact on computational
fficiency during inference.

.3. Computational efficiency through depthwise and depthwise separable
onvolutions

To efficiently extract hierarchical features from input ECG signals,
CGencode employs convolutional layers. Traditional 2D convolutions,
lthough effective, are computationally demanding in terms of FLOPs,
nd can require many trainable parameters. To mitigate this com-
utational burden, ECGencode incorporates depthwise and depthwise
eparable convolutions, offering a more efficient computational profile
here applicable.

Figs. 7–9 provide a visual demonstration of the FLOPs required
or these three types of convolutions: standard 2D, depthwise 2D, and
epthwise separable 2D. For comparative clarity, each convolutional
ype is applied to the same input data (12 × 5000 × 16) and configured

to produce the same output shape (1 × 5000 × 64). It should be
noted that the FLOPs calculations presented are theoretical estimates
based on a straightforward CPU implementation of these algorithms
without padding. It is also mentioned that ECGencode does not use bias
terms for its various convolutions. Not only does this save additional
parameters and FLOPs, but the use of BN after the convolutions makes
the use of a bias term in the convolution redundant (Ioffe & Szegedy,
2015).
8

3.3.1. Standard 2D convolution
As depicted in Fig. 7, a standard 2D convolution effectively involves

a 3D convolutional operation, as it incorporates both the 2D signal
dimensions and the input channels as the third dimension. The kernel
used in this type of convolution performs element-wise multiplications
and additions on this 3D input to produce each output channel.

Given an input with dimensions 𝐻 × 𝑊 × 𝐶in, a kernel of size
1 × 𝐾2 × 𝐶in, a stride 𝑆, and 𝐶out output channels, the FLOPs for

his operation can be calculated using Eq. (1). Here, 𝐻 ′, 𝑊 ′, 𝐾 ′
standard,

and Biasstandard represent the output height, output width, FLOPs for
ach kernel pass, and the FLOPs for bias addition, respectively. These
erms are defined in Eq. (2). Note that 𝐾 ′

standard is multiplied by two
o account for both multiplication and addition for each weight in the
ernel.

Using Eq. (1) for the standard convolution visualised in Fig. 7, the
otal FLOPs is found to be 123,200,000.

LOPsstandard = (𝐾 ′
standard ×𝐻 ′ ×𝑊 ′ × 𝐶out)

+ Biasstandard (1)

𝐻 ′ =
⌈

𝐻 −𝐾1 + 1
𝑆

⌉

𝑊 ′ =
⌈

𝑊 −𝐾2 + 1
𝑆

⌉

𝐾 ′
standard = 2 × (𝐾1 ×𝐾2 × 𝐶in)

iasstandard = 𝐶out ×𝐻 ′ ×𝑊 ′ (2)

The number of parameters for a standard 2D convolution is given
by Eq. (3), which accounts for both the kernel weights and the bias
terms for each output channel. For the standard 2D convolution in
Fig. 7 with 64 output kernels, the total number of parameters is 12,352.

Paramsstandard = ((𝐾1 ×𝐾2 × 𝐶in) + 1) × 𝐶out (3)

3.3.2. Depthwise 2D convolution
Fig. 8 showcases depthwise 2D convolution, a more computationally

efficient variant that processes each input channel separately. This
channel-wise operation eliminates the fusion of information across
different input channels, substantially reducing both FLOPs and the
number of parameters.

A depth multiplier 𝐷 is introduced to control the output channel
count, allowing it to be a multiple of the input channels. The multiplier
𝐷 determines the number of output channels generated per input
channel, effectively specifying the number of distinct kernels per input
channel.

Given an input with dimensions 𝐻 × 𝑊 × 𝐶in, kernel dimensions
1 ×𝐾2 × 𝐶in, a stride 𝑆, and a depth multiplier 𝐷, the FLOPs for this
peration are governed by Eq. (4). Here, 𝐻 ′ and 𝑊 ′ are as defined
n Eq. (2), and 𝐾 ′

depth and Biasdepth are outlined in Eq. (5).
Application of Eq. (4) to the depthwise convolution in Fig. 8 yields a

otal of 8,000,000 FLOPs. Remarkably, this constitutes just 6.49% of the
LOPs required for a standard 2D convolution with identical input and
utput dimensions. The ratio FLOPsdepthwise

FLOPsstandard
can be roughly approximated

as 𝐷
𝐶out

, highlighting the computational advantages of depthwise 2D
onvolutions when 𝐷 is significantly smaller than 𝐶out.

LOPsdepthwise = (𝐾 ′
depth ×𝐻 ′ ×𝑊 ′ × 𝐶in ×𝐷)

+ Biasdepth (4)

𝐾 ′
depth = 2 × (𝐾1 ×𝐾2 × 1)

Biasdepth = 𝐶in ×𝐷 ×𝐻 ′ ×𝑊 ′ (5)

The parameter count for depthwise 2D convolutions is calculated
using Eq. (6). For the instance in Fig. 8 with 16 input channels and
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Fig. 7. Operational steps, parameters and FLOPs analysis for a standard 2D convolution.

Fig. 8. Operational steps, parameters and FLOPs analysis for a depthwise 2D convolution.

Fig. 9. Operational steps, parameters and FLOPs analysis for a depthwise separable 2D convolution.
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a depth multiplier of 4, the total is 832 parameters. This accounts for
erely 6.74% of the parameters needed for a standard 2D convolution.

aramsdepthwise = ((𝐾1 ×𝐾2) + 1) × (𝐶in ×𝐷) (6)

.3.3. Depthwise separable 2D convolution
As illustrated in Fig. 9, depthwise separable 2D convolution builds

pon the efficiency of depthwise 2D convolution but reintegrates cross-
hannel information. This two-step process consists of an initial depth-
ise 2D convolution followed by a pointwise 2D convolution. The

ormer operates identically to the previously described depthwise con-
olution, whereas the latter employs a standard convolution with a
ernel size of 1 × 1 × 𝐶in, facilitating the merging of information from
he depthwise output channels.

Employing Eq. (7), the FLOPs for this convolution type can be
alculated. Here, 𝐻 ′ and 𝑊 ′ align with those in Eq. (2), and 𝐾 ′

depth
nd Biasdepth are consistent with those in Eq. (5). 𝐾 ′

point and Biaspoint
re formulated in Eq. (8).

For the depthwise separable convolution presented in Fig. 9, Eq. (7)
ields a total of 12,560,000 FLOPs. This constitutes merely 10.19% of the
LOPs required for a standard convolution of identical dimensions, yet
s 1.57 times greater than that of a depthwise convolution. Therefore,
epthwise separable convolutions offer a nuanced balance between
omputational efficiency and channel mixing, particularly beneficial in
he feature convolution stage of ECGencode.

LOPsseparable = FLOPsdepthwise + FLOPspointwise
standard

= ⟨(𝐾 ′
depth ×𝐻 ′ ×𝑊 ′ × 𝐶in ×𝐷)

+ Biasdepth⟩

+ ⟨(𝐾 ′
point ×𝐻 ′ ×𝑊 ′ × 𝐶out)

+ Biaspoint⟩ (7)

𝐾 ′
point = 2 × (1 × 1 × 𝐶in ×𝐷)

iaspoint = 𝐶out ×𝐻 ′ ×𝑊 ′ (8)

Employing Eq. (6) for the depthwise stage yields 208 parameters,
hilst Eq. (3) for the pointwise stage (standard 2D convolution with a
ernel of size 1×1×𝐶in) results in 1088 parameters, totalling 1296. This is
mere 10.49% of the parameters required for a standard convolution.

.3.4. Striding over pooling
Conventional convolutional neural networks often employ a combi-

ation of convolutional layers for feature extraction and pooling layers
or latent space downscaling. However, it has been demonstrated that
ubstituting pooling layers with convolutional layers that use increased
triding can enhance model performance, as this allows the network
o effectively learn a downscaling strategy (Springenberg et al., 2015).
lthough employing striding in place of pooling preserves the FLOPs
ount, it increases the model’s parameter count due to the learnable
ature of the downscaling convolution. To achieve computational effi-
iency while maintaining compactness, ECGencode integrates striding
irectly into its primary convolutional layers, thereby eliminating the
eed for separate downscaling convolutions and consequently decreas-
ng both FLOPs and parameters count. Empirical findings show that the
ntegration of these two convolutions into one results in a negligible
erformance decrease for ECGencode whilst requiring considerably
ewer parameters and FLOPs.

.4. Controllable and extendable feature complexity

Designed for versatility, ECGencode offers a rich configuration space
hrough intuitive configuration parameters, facilitating adaptation to
arious latent space complexities and problem settings. In addition
o this inherent flexibility, ECGencode also easily supports extensions,
uch as the incorporation of LSTM units. This section discusses these
wo primary directions for customising ECGencode to address a diverse
10

ange of applications. v
.4.1. Parameter-driven control of latent space complexity
ECGencode enables control over its complexity via multiple intu-

tive configuration parameters, with the number of augmented leads,
ime points, and output channels being the most important.
Augmented Leads and Time Point Regulation
The number of parallel spatial convolutions directly correlates with

he number of augmented leads, which primarily encode spatial in-
ormation. Although there is no explicit upper limit on the number
f augmented leads, a practical upper bound is suggested to be eight.
his number aligns with the eight physical leads used in 12-lead ECG
ecordings, where aVR, aVL, aVF, and III are derived as linear functions
f leads I and II (Attia, Noseworthy, et al., 2019).

Control over the amount of time points retained in the latent space
s achieved through the manipulation of striding parameters. Early-
tage striding is recommended for significant FLOP reduction in later
tages, especially when working with a high-resolution input of 500 Hz.
his makes the increase of striding favourable in early stages whilst the
ecrease of striding is most computationally efficient in later stages.
Adjustment of Output Channels
ECGencode’s internal and external complexity can be further fine-

uned through the number of output channels in its temporal and
eature convolution components. The amount of different length ker-
els and output channel counts in the temporal convolution stage
nfluences internal complexity. The final pointwise step in the last
eature convolution is what ultimately decides the amount of latent
pace output channels and thus the external complexity. Increasing
he depth multiplier in the depthwise step of the feature convolutions
ffers an additional lever for the internal complexity of ECGencode.
n practice, aligning internal and external complexities yields optimal
erformance.

.4.2. Incorporating advanced extensions
While the ECGencode configuration presented in Fig. 1 serves as

highly compact and computationally efficient setup for binary ECG
lassification, featuring a flattened latent space and a singular softmax-
ctivated dense layer, ECGencode is designed to support sophisticated
xtensions. These extensions are enabled by the convolutional nature
f ECGencode which retains the sequential patterns present in ECG
ignals.
LSTM for Sequential Modelling
Transforming the ECGencode output from its initial 3D format

augmented leads × time points × channels) to a 2D configuration
augmented time points × (augmented leads ∗ channels)) enables the
ntegration of LSTM units. This results in a hybrid CNN-LSTM model
apable of exploiting the inherent temporal dynamics of ECG signals.
lthough beneficial for context-sensitive feature extraction, this exten-
ion demands significant additional computational resources in terms
f both parameters and FLOPs and as such is not suitable for all
pplications.
Complex Output Models
Task-specific requirements may necessitate more intricate output

odels. Incorporating a fully connected dense layer before the softmax
ayer can be advantageous for complex ECG classification tasks, includ-
ng multi-class and multi-label scenarios. While the experiments in this
aper are limited to ECG classification, ECGencode is versatile enough
or a range of applications, including ECG regression tasks which also
equire effective ECG feature encoding.

.5. ECGencode-specific visualisation

Inspired by the proven FBCSP technique (Ang et al., 2008), EC-
encode has been designed such that each layer fulfils a distinct

ole, as detailed in Section 3.1. This structured design enhances both
he intrinsic interpretability of the learned parameters and post hoc

isualisation capabilities. A preliminary examination of both these
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Fig. 10. Various visualisation techniques applied to the first ECGencode model for
binary ECG classification. Fig. 10(a) depicts the initial segment of Lead II from an
input ECG, both in its raw form and as processed by temporal convolutions using
2D kernels of dimensions 1 × 16 × 1 (Kernel 1) and 1 × 1024 × 1 (Kernel 16),
along with the combined output from all 16 temporal convolution kernels. Fig. 10(b)
presents both a SmoothGrad saliency map and a Grad-Cam++ class activation map for
the same segments on a correctly classified AFib-positive ECG. Fig. 10(c) reveals the
relative importance of each lead in generating a single augmented lead in the spatial
convolution, based on the intrinsic evaluation of the learned kernel weights.

aspects is presented below, demonstrating that the layers within EC-
Gencode exhibit the anticipated behaviour, and confirming the effec-
tiveness of the architectural design. These preliminary visualisations
and interpretations reveal ECGencode’s potential to facilitate advanced
medical interpretability, positioning ECGencode as a promising tool
for further, medically validated, investigative research towards model
explainability.

3.5.1. Insights into the temporal convolution
Designed to emulate the frequency filtering stage of the FBCSP

technique, the temporal convolution component within ECGencode is
structured to capture both high-frequency and low-frequency attributes
from the input ECG signal. Visualisation of individual channels of this
component reveals the varying length kernels behave as expected. As
illustrated in Fig. 10(a), shorter kernels (i.e., Kernel 1) predominantly
capture high-frequency details, whereas longer kernels (i.e., Kernel 16)
emphasise the lower-frequency elements of the input ECG.

3.5.2. Interpretation of spatial convolution
The spatial convolution component in ECGencode utilises its learned

kernel weights to determine the significance of corresponding input
leads for generating the augmented leads. Each kernel in this compo-
nent, responsible for generating one of the output augmented leads,
consists of 12 weights, one for each input lead. Due to the preceding
11
lead-specific BN, these learned weights directly indicate the extent of
influence each lead has in the creation of the augmented lead. Leads
with weights close to zero contribute minimally to the final augmented
lead and thus to the final prediction. Likewise, leads with weights that
have a larger absolute value contribute more to the final augmented
lead.

This intrinsic interpretation of the learned weights enables a topo-
graphic visualisation, where the weights assigned to individual leads
can be spatially mapped. This visualisation technique, illustrated in
Fig. 10(c), can assist medical staff by highlighting which lead in the
original 12-lead input signal contains the most prominent information
relevant to the diagnosis.

3.5.3. Utilisation of conventional visualisation techniques
Conventional visualisation methodologies from the broader domain

of deep learning offer additional ways for interpreting models which
employ ECGencode. This includes gradient-based class activation maps,
such as GradCAM (Selvaraju et al., 2020), GradCAM++ (Chattopadhay
et al., 2018), ScoreCAM (Wang et al., 2020), LayerCAM (Jiang et al.,
2021), as well as saliency maps, such as vanilla saliency (Simonyan
et al., 2014) and SmoothGrad (Smilkov et al., 2017). These techniques
are commonly used for ECG analysis models to provide heatmaps that
indicate critical regions influencing the model’s decisions (Jahmunah
et al., 2022; Kim et al., 2022; Tohyama et al., 2023).

Given ECGencode’s custom layers are disabled during inference,
these existing techniques can be applied directly to models incorpo-
rating ECGencode. An application of both a SmoothGrad saliency map
and a Grad-Cam++ class activation map for the same segments on a
correctly classified AFib ECG by the first ECGencode model, is depicted
in Fig. 10(b). The heatmaps generated by these methods highlight
the P-wave regions in the ECG signal, an area recognised to exhibit
diminished or absent activity in AFib-positive patients (Goodacre &
Irons, 2002).

4. Evaluation and results

This section evaluates ECGencode’s versatility, computational effi-
ciency, and performance across four distinct ECG classification tasks,
employing ECGencode as a feature encoder in two separate deep learn-
ing models. Both configurations are assessed using open-source data
sets and benchmarked against SOTA techniques, highlighting ECGen-
code’s potential in real-world applications.

4.1. Available data sets

ECGencode is evaluated using the PTB-XL (Goldberger et al., 2000;
Wagner et al., 2020, 2022) and CODE-15% (Lima et al., 2021; Ribeiro
et al., 2021, 2020) open-source data sets. These data sets are among
the most extensive in the public domain, offering a reliable platform for
assessing generalisability and benchmarking against SOTA methodolo-
gies. While they provide valuable insights into real-world performance,
it should be noted that they cannot fully replicate the breadth of data
typically available in private clinical settings.

Both data sets are utilised in their original formats, except for per-
device normalisation and the upsampling of CODE-15% to 500 Hz
to align with PTB-XL. These preprocessing steps aim to improve the
models’ robustness and transferability, mitigating device-specific biases
and enhancing generalisability across different ECG recording devices

and data sets.
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4.1.1. PTB-XL data set
The PTB-XL data set comprises 21,837 standardised 10-second 12-

lead ECG recordings (Goldberger et al., 2000; Wagner et al., 2020,
2022). Sourced from 18,885 distinct patients between October 1989 and
June 1996, these recordings employ various Schiller AG ECG devices
and exhibit a data shape of 12×5000 due to a 500 Hz sampling rate. On
average, 1.16 ECGs per patient are present in the data set.

Being a multi-label data set, PTB-XL assigns one or more labels
to each ECG, reflecting the large variety of cardiac conditions and
possible combinations of them found in real-world data. The PTB-
XL data set features 71 diverse labels, which are different types of
diagnostic statements, ranging from rhythm to form statements, with
a distribution that approximates actual clinical prevalence rates. For
instance, it encompasses 9528 normal ECGs (43.63%), contrasted with
rare diagnostic categories like second-degree AV block which only has
14 samples (0.06%). The median age of the data set’s patients is 62,
with an interquartile range of 22. Additional metadata, such as the ECG
device and recording date, are also available.

For a comprehensive overview and download details of the PTB-XL
data set, refer to the work by Wagner et al. (2020). Benchmarking infor-
mation and performance metrics are available in the work of Strodthoff
et al. (2021).

4.1.2. CODE-15% data set
The CODE-15% data set contains 345,779 12-lead ECG exams, each

lasting either 7 or 10 seconds (Lima et al., 2021; Ribeiro et al., 2021,
2020). These exams were collected between 2010 and 2016 by the
Telehealth Network of Minas Gerais (TNMG) in Brazil and originate
from 233,770 distinct patients. Representing a stratified 15% subset of
the larger, non-publicly available CODE data set, CODE-15% averages
1.48 ECGs per patient. To have a uniform data shape of 12 × 4096 for
both 7 and 10-second ECGs in the CODE-15% data set, zero padding is
pre-applied to the 400 Hz signals. For compatibility with PTB-XL, this
zero padding is removed from the CODE-15% ECGs such that they can
be upsampled to 500 Hz and re-padded in case of the 7-second ECGs to
have a final, shared with PTB-XL, data shape of 12 × 5000.

CODE-15% includes seven diagnostic labels such as first-degree
AV block and AFib. In contrast to PTB-XL, this data set is less rich
in metadata; it lacks ECG device details, necessitating a generalised
normalisation process and only the age of the patient at the time
of recording is available, limiting the ability to determine the exact
recording date.

For further insights into the CODE-15% data set, consult the works
by Ribeiro et al. (2021, 2020) and Lima et al. (2021).

4.2. Experimental setup and evaluation metrics

To assess the performance of the ECGencode feature encoder whilst
demonstrating its intuitive model configuration parameterisation and
versatility, two custom deep learning models incorporating ECGencode
have been constructed for four distinct ECG classification tasks. The
first model prioritises computational efficiency without loss of classi-
fication performance, targeting three binary ECG classification tasks
related to AFib presence on the ECG. The second model features a
more complex architecture that supplements the ECGencode latent
space with Long Short-Term Memory (LSTM) units, designed for multi-
label ECG classification. This more complex ECGencode model 2 aims
to demonstrate how an extension to ECGencode can be made using
intuitive reasoning over the model configuration parameters and latent
space, whilst maintaining a low parameter count and SOTA matching
performance. These models undergo evaluation both within an isolated
test partition of the originating data set and on an entirely separate,
previously unseen data set for the binary ECG classification tasks. This
provides a comprehensive performance assessment through multiple
reported metrics.
12
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Fig. 11. Temporal alignment of all ECGs from an AFib-positive patient categorised as
prediction, AFib, and NSR ECGs. Prediction ECGs precede the first AFib-labelled ECG,
meaning the patient was not known to be AFib positive yet. NSR ECGs follow the first
AFib-labelled ECG but are not labelled as AFib themselves.

4.2.1. ECGencode model 1: Binary ECG classification
ECGencode model 1, illustrated in Fig. 1 and detailed in Sec-

tion 3.1, is optimised for binary ECG classification with a focus on
achieving high computational efficiency, measured both in terms of
parameters and FLOPs, without loss of classification performance. The
configuration of model 1 is as follows:

• Temporal convolution: Kernels of temporal length 16, 64, 256
and 1024 spanning 0.03, 0.1, 0.5, and 2 seconds, respectively.
Striding of eight for significant temporal resolution and FLOPs
reduction. Each kernel has 4 output channels, totalling a compu-
tationally manageable 16.

• Spatial convolution: 4 augmented leads for significant temporal
downscaling, based on the optimal found four number of leads
by Lai et al. (2021).

• Feature convolution 1: Depthwise kernel of temporal length 32
with 4 pointwise output channels. A depth multiplier of 1 and a
stride of 8 is used.

• Feature convolution 2: Depthwise kernel of temporal length 8
with 4 pointwise output channels. Depth multiplier of 1 and a
stride of 2. These parameters were chosen to obtain a compact
output latent space.

• ECGencode output shape: 4 × 40 × 4.
• ECGencode parameters: 6960.
• Extension: Simple 1D flatten.
• Classification: softmax activated dense layer of 2 units.
• Total model parameters: 8242.
• Total model FLOPs: ±83M.

ECGencode model 1 is trained using the CODE-15% data set, par-
itioned into a training (80%), validation (10%), and test (10%) set
hrough a stratified strategy, ensuring that the label distribution is
aintained and no patients overlap exists between the sets. All ECGs

rom a patient with at least one AFib-positive ECG are considered a
ositive sample, this includes the prediction, AFib and NSR ECGs as
epicted in Fig. 11. All ECGs from patients without any AFib association
re considered negative samples, which is inspired by the experimental
etup of Attia, Noseworthy, et al. (2019) for similar experiments. It
s important to note that due to the limited metadata of CODE-15%,
hich does not include the exact recording date of an ECG, the tempo-

al ordering of ECGs from a patient is based on the patient’s age. Thus,
or an ECG to be considered a prediction sample of AFib, the patient’s
ge must be lower than on their first AFib-diagnosed ECG. In situations
here the first AFib-diagnosed ECG is close to their birthday (e.g., one
ay before their birthday), this means that an ECG has to be taken at
east 1 year before the first AFib-diagnosed ECG to be considered as

prediction sample. Given this already severely limits the amount of
rediction samples, no upper limit for age difference to be considered a
rediction sample is set. This means the prediction samples have a long
ime horizon, making the prediction evaluation task a very difficult
ne. Likewise, an ECG without AFib diagnosis is considered an NSR
ample when the patient’s age is identical or higher than on their first
Fib-diagnosed ECG. This means that some samples considered NSR

n the NSR test set could be recorded before the first AFib-diagnosed

CG, as ordering them in time is impossible when the patient’s age is
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Fig. 12. A high-level overview of ECGencode model 2 used for multi-label ECG classification of 71 classes. This model, and the ECGencode configuration it uses, focus on
emonstrating ECGencode’s flexibility and extendibility. The 2D input consists of a standard 10-second 12-lead ECG sampled at 500 Hz, represented as a 12 × 5000 matrix.

ECGencode outputs a 3D latent space with dimensions 5 × 79 × 32 which is flattened into 2D by merging the channel and lead dimensions. A bi-directional LSTM layer with 64
units in each direction is used to create a CNN-LSTM model. A fully connected layer with sigmoid activation accomplishes the multi-label ECG classification. ECGencode Model 2
has 133,495 parameters in total.
l

identical. In this sense, the NSR detection test task likely contains what
is intuitively considered ‘‘prediction samples’’, but due to the limited
metadata cannot be labelled as such.

For the training set, this corresponds to 7865 positive samples, of
hich only 1677 are NSR samples and 983 are prediction samples,

contrasted to the large set of negatives which consists of 271,643 ECGs.
For the validation set this results in 407 NSR samples and 238 prediction
amples in the positive set of 1432 samples and 29,547 negative samples.

The model selected for further use is the one obtained at the epoch
where the validation sensitivity is at its highest. This choice is based
on wanting to train a model that correctly predicts as many of the
positive samples given the heavy class imbalance. Training is conducted
for 2500 epochs using an AdamW optimizer and an alpha-balanced
categorical focal cross-entropy loss function to take into account the
heavy class imbalance of the training data, typical for ECG analysis
tasks (Lin et al., 2020; Loshchilov & Hutter, 2019; Romdhane et al.,
2020). The thresholds used for converting the continuous values to
labels are optimised for achieving the highest validation F1 score.

4.2.2. ECGencode model 2: Multi-label ECG classification
To demonstrate ECGencode’s intuitive model configuration, versa-

tility, and ECG-structured latent space, a second ECGencode model
targeting multi-label classification is proposed. ECGencode model 2,
visualised in Fig. 12, has been designed for classifying 71 class labels
in a multi-label task and is an extension of the binary model proposed
in Section 4.2.1. The configuration of ECGencode has been modified
to boast more complex internal and external representations and an
LSTM extension has been added following the guidelines discussed in
Section 3.4. These modifications have been done by reasoning over
the ECGencode configuration parameters and generated latent space
directly, without optimising the model architecture through compu-
tationally expensive methods. The proposed LSTM extension demon-
strates the possibility of sequential modelling using ECGencode as
elaborated in Section 3.4. The resulting CNN-LSTM architecture is thus
a more complex model compared to the first ECGencode model but
one that is capable of achieving performance on par with the PTB-XL
benchmark models proposed by Strodthoff et al. (2021), as discussed
in Section 4.4. The exact configuration of ECGencode model 2 as
compared to ECGencode model 1 is given below:

• Temporal convolution: Kernels of temporal length 16, 64, 256
13

and 1024. Striding of eight. Each kernel has 4 output channels,
totalling 16. This is unchanged compared to ECGencode model
1 to maintain a high temporal reduction early on, helping save
significant FLOPs later in the model.

• Spatial convolution: 5 augmented leads, a slight increase from
ECGencode model 1’s four augmented leads, preserving a higher
spatial resolution.

• Feature convolution 1: Depthwise kernel of temporal length 16
with 16 pointwise output channels. Depth multiplier of 1 and
a stride of 4. This uses a lower striding compared to ECGen-
code model 1, preserving a higher temporal resolution, and more
channels for a more complex internal representation.

• Feature convolution 2: Depthwise kernel of temporal length 16
with 32 pointwise output channels. Depth multiplier of 2 and
a stride of 2. This uses a lower striding compared to ECGen-
code model 1, preserving a higher temporal resolution, and more
channels for a more complex external representation.

• ECGencode output shape: 5 × 79 × 32, contrasted to ECGencode
model 1’s more compact latent space of 4 × 40 × 4.

• ECGencode parameters: 8624, contrasted to ECGencode model
1’s 6960.

• Extension: 2D flatten followed by a bi-directional LSTM layer
with 64 units per direction and finally a channel-based BN layer.

• Classification: sigmoid activated dense layer of 71 units.
• Total model parameters: 133,495, contrasted to ECGencode mode

1’s 8242.

ECGencode model 2 is trained using the PTB-XL data set for classi-
fying all of the 71 diagnostic statements available. The PTB-XL data
set is partitioned into training (folds 1–8), validation (fold 9), and
testing (fold 10) sets, following an identical setup to the one proposed
by Strodthoff et al. (2021) in their PTB-XL benchmark paper. Following
epoch-based experimentation using the training and validation sets, the
model undergoes a final training phase for 1500 epochs using both
the training and validation set as training data. An AdamW optimiser
and an alpha-balanced binary focal cross-entropy loss function are
utilised in this training phase (Lin et al., 2020; Loshchilov & Hutter,
2019; Romdhane et al., 2020). The thresholds used for converting the
continuous values to labels are optimised for achieving the highest
validation F1 score.

4.2.3. Evaluation metrics
To evaluate the performance of the devised models, multiple eval-
uation metrics are reported. These metrics are selected to account for
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the heavy class imbalance in ECG data sets. Consequently, conventional
metrics such as accuracy are consciously excluded to preclude mislead-
ingly high scores from naive models that predict solely the majority
class.

Eq. (9) defines the Area Under the Receiver Operating Character-
istic Curve (AUC), which serves to quantify the model’s capacity for
discriminating between positive and negative instances, independent of
the threshold used for converting the continuous values to labels. It is
defined in terms of the True Positive Rate (TPR) and the False Positive
Rate (FPR). A high AUC generally means multiple good thresholds exist
for achieving both a good TPR as well as a good FPR, and the threshold
can be adjusted in favour of any of these rates. For the multi-label task,
a macro-averaged AUC is reported.

AUC = ∫

1

𝑥=0
TPR(FPR−1(𝑥)), 𝑑𝑥 (9)

Besides AUC, some threshold dependent metrics, based on the num-
ber of True Positives (TP), False Positives (FP), True Negatives (TN) and
False Negatives (FN) are also reported. The precision metric, specified
in Eq. (10), denotes the positive predictive value, the proportion of
true positives over all of the positive predictions. The sensitivity metric,
specified in Eq. (11), denotes the recall, the proportion of true positives
over all the positive samples. As precision and sensitivity are correlated
to each other, and an improvement in one metric often causes a reduc-
tion in the other, the F1 score is often considered to summarise these
two metrics. The F1 score, defined in Eq. (12), serves as a harmonic
mean of precision and sensitivity. As these threshold-dependent metrics
focus on the positive samples, the specificity metric is also provided,
which denotes the true negative rate, as depicted in Eq. (13). For the
multi-label task, these metrics are macro-averaged across all 71 classes.

Precision = TP
TP + FP (10)

Sensitivity = TP
TP + FN (11)

F1 Score = 2 ×
Precision × Sensitivity
Precision + Sensitivity (12)

Specificity = TN
TN + FP (13)

Specific to the multi-label ECG classification task, the Hamming loss
is also reported. As illustrated in Eq. (14) where 𝑦𝑖,𝑗 is the target, �̂�𝑖,𝑗
is the model output, 𝑁 is the total number of samples and 𝐿 is the
total number of labels, this metric quantifies the fraction of erroneously
predicted labels to the total number of labels.

Hamming Loss = 1
𝑁 ⋅ 𝐿

𝑁
∑

𝑖=1

𝐿
∑

𝑗=1
xor(𝑦𝑖,𝑗 , �̂�𝑖,𝑗 ) (14)

These metrics are presented as point estimates derived from the
complete test set, complemented by a 95% confidence interval for
the AUC and F1 metric. This confidence interval is calculated through
empirical bootstrapping on the test set, encompassing 10,000 iterations.
The bootstrapping methodology employed here involves sampling the
test set with replacement, creating a distinct test set of the same size
for each of the 10,000 iterations. This approach is consistent with the
ne used in the PTB-XL benchmarking paper by Strodthoff et al. (2021),
nabling a direct comparison with their findings. Under this framework,
model’s better performance for a specific metric is deemed statisti-

ally significant if the confidence intervals for the point estimates do
ot overlap.

.3. Binary ECG classification results

The methodology employed for training ECGencode model 1 is
laborated in Section 4.2.1. Besides ECGencode model 1, the model
y Attia, Noseworthy, et al. (2019), now referred to as Attia’s model,
nd the most compact model by Phukan et al. (2023) for 10-second
CG classification, now referred to as AFibri-Net 3, were trained using
14
the same methodology and serve as benchmark models. Attia’s model,
inspired by a ResNet-9 architecture (He et al., 2016), is chosen as
benchmark model as it has received varied levels of clinical valida-
tion for its SOTA performance in NSR AFib detection and new-onset
AFib prediction, among other ECG classification tasks (Attia, Kapa,
et al., 2019; Attia, Noseworthy, et al., 2019; Christopoulos et al., 2020;
Gruwez et al., 2023; Noseworthy et al., 2020; Raghunath et al., 2021).
AFibri-Net 3 was chosen as it was recently proposed as a computa-
tionally efficient model for AFib detection, suitable for use on edge
devices. Given the limited available metadata, traditional AFib risk
scores such as CHARGE-AF by Alonso et al. (2013) were not applicable
for comparison.

Evaluation of these binary models encompasses three tasks with
the first being the detection of AFib-related ECGs (Related - all ECGs
from AFib-positive patients are considered positive). This corresponds
to the task and labelling scheme used for training ECGencode model
1. Besides this task, two more complex sub-tasks are also evaluated:
NSR AFib detection (NSR) and new-onset AFib prediction (Prediction).
These sub-tasks only use the NSR or Prediction ECGs from AFib-positive
patients, as illustrated in Fig. 11, in the positive set and omit the other
ECGs from AFib-positive patients from the test set. The first task was
chosen to demonstrate how well the model learned the training task,
whereas the other two tasks represent detecting a subgroup of the
positives which cannot be detected through traditional methods, high-
lighting the benefit of DL and its use as risk prediction and screening
selection tool (Attia, Noseworthy, et al., 2019; Christopoulos et al.,
2020; Gruwez et al., 2023; Raghunath et al., 2021). As noted in
Section 4.2.1, the limited metadata in the used data sets and the choice
for no fixed maximum time-to-onset delta for the prediction samples
result in the NSR detection and new-onset prediction tasks being very
hard tasks.

Given the limited number of positives, 1973 for the first task, 639 for
NSR detection and 293 for new-onset prediction, and a high imbalance
towards negatives (33,319 for all) in the CODE-15% test split, the
risk of learnable data set biases is not negligible. As such, additional
assessments are carried out on the previously unseen, complete PTB-XL
data set (Goldberger et al., 2000; Wagner et al., 2020, 2022).

Table 1 summarises the found evaluation metrics for these models
on these data sets. Given the explained relation between sensitivity,
specificity and precision, in Section 4.2, the confidence intervals and
significant differences are only highlighted for the AUC and F1 metric.

Table 1 reveals several insights. First, the evaluation results show
that ECGencode achieves the highest AUC and sensitivity across all
tasks, demonstrating its power to match or surpass SOTA perfor-
mance. This is especially notable considering the used sensitivity-
focused model selection procedure, where the highest validation sen-
sitivity models were used for collecting the results. Second, Attia’s
model significantly outperforms the other models in F1 score for the
CODE-15% test set of the ‘‘related’’ task, which had the same labelling
procedure as the train set, but is significantly worse than ECGencode
model 1 on the PTB-XL dataset. This suggests a possible data bias is
learned rather than medical properties of the task in the Attia model,
further highlighting to the effectiveness of ECGencode’s novel Spa-
tial Gaussian Noise regularisation for improved generalisation results.
Third, AFibri-Net 3 consistently performs statistically worse in both
AUC and F1 for various tasks, indicating its computational efficiency
sacrifices performance. Overall, ECGencode model 1’s performance,
enhanced by the novel Spatial Gaussian Noise Regularisation technique,
suggests it is highly effective for these binary ECG analysis tasks while
being computationally far more efficient when compared to the SOTA
model, as further detailed in Section 4.5.

While this exact evaluation setup has not been considered in other
works, taking into account the discussed metadata restrictions and test
set configuration, the CODE-15% NSR test set is comparable to the
NSR AFib detection setup of Attia, Noseworthy, et al. (2019) and the

short-term prediction setup of Raghunath et al. (2021), which limits the
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Table 1
Summary of binary ECG classification performance for detection of AFib-related ECGs (Related - all ECGs from AFib-positive patients are
considered positive), NSR AFib detection (NSR), and new-onset AFib prediction (Prediction) tasks. Models were trained on the CODE-15% train
set, considering all ECGs from AFib-positive patients as positive samples. Evaluations were performed on the CODE-15% test set and the full
PTB-XL data set to examine generalisation. Metrics reported include AUC, F1 score, sensitivity, specificity, and precision, with point estimates
for the test sets and confidence intervals for AUC and F1 metrics derived from 10,000 bootstrapping iterations. F1, Sensitivity, specificity, and
precision are based on thresholds optimised for the highest CODE-15% validation set F1 score. Bold indicates top scores per metric and dataset
whilst asterisks (*) mark scores where the AUC and F1’s confidence intervals do not overlap with the highest scores, indicating significant
differences.
Task Data set Model AUC F1 Sensitivity Specificity Precision

Related CODE-15% ECGencode M1 0.9127 ± 0.0079 0.6052 ± 0.0185* 0.5844 0.9795 0.6277
Attia 0.9007 ± 0.0090 0.6627 ± 0.0188 0.5580 0.9925 0.8156
AFibri-Net 3 0.8558 ± 0.0092* 0.4158 ± 0.0180* 0.4891 0.9489 0.3616

PTB-XL ECGencode M1 0.9430 ± 0.0070 0.6372 ± 0.0207 0.5198 0.9900 0.8232
Attia 0.9137 ± 0.0083* 0.5028 ± 0.0245* 0.3518 0,9958 0.8811
AFibri-Net 3 0.8442 ± 0.0096* 0.2522 ± 0.0238* 0.1608 0.9898 0.5842

NSR CODE-15% ECGencode M1 0.8636 ± 0.0166 0.2951 ± 0.0298 0.3584 0.9795 0.2508
Attia 0.8355 ± 0.0187 0.3272 ± 0.0381 0.2520 0.9945 0.4667
AFibri-Net 3 0.7993 ± 0.0184* 0.1893 ± 0.0255* 0.2457 0.9741 0.1539

PTB-XL ECGencode M1 0.7367 ± 0.0372 0.0623 ± 0.0350 0.0694 0.9900 0.0566
Attia 0.6614 ± 0.0421 0.0253 ± 0.0309 0.0173 0.9970 0.0469
AFibri-Net 3 0.6942 ± 0.0414 0.0753 ± 0.0497 0.0520 0.9972 0.1364

Prediction CODE-15% ECGencode M1 0.7652 ± 0.0301 0.0897 ± 0.0270 0.1331 0.9839 0.0676
Attia 0.7408 ± 0.0301 0.0734 ± 0.0308 0.0683 0.9930 0.0794
AFibri-Net 3 0.7238 ± 0.0296 0.0445 ± 0.0222 0.0546 0.9877 0.0376

PTB-XL ECGencode M1 0.7546 ± 0.0561 0.0756 ± 0.0437 0.1058 0.9912 0.0588
Attia 0.6599 ± 0.0501 0.0423 ± 0.0442 0.0385 0.9960 0.0471
AFibri-Net 3 0.7195 ± 0.0460 0.0282 ± 0.0433 0.0192 0.9982 0.0526
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time-to-onset delta to a maximum of one year. This makes an indirect
comparison to these works possible. Raghunath et al. (2021) report a
sensitivity of 0.69 and a number needed to screen (NNS) of 9 to find one
new case of AFib. This NNS translates to a precision of 0.11 ( 19 ). Thus,
the (non-reported) F1 score of their model is calculated as 2× 0.69×0.11

0.69+0.11 =
.1897. In contrast, the F1 score for the comparable NSR CODE-15%
etting of this work is 0.2951 for ECGencode Model 1, which is a
easonable difference given the slightly more challenging evaluation
ask of Raghunath et al. (2021). Similarly, Attia, Noseworthy, et al.
2019) report a higher F1 score of 0.392, but this is expected given their
asier-to-classify test set, which includes only true NSR samples. Their
odel (Attia), when trained and evaluated under the experimental

etup of this work, results in a similar F1 score to ECGencode Model
. Additionally, the more challenging prediction task and cross-clinic
alidation on the PTB-XL test set show expected performance results
n comparison. It should be noted that a different model threshold
ptimisation technique could be used to favour a specific metric other
han F1, as is currently the case.

.4. Multi-label ECG classification results

The training approach for the ECGencode model 2 is detailed in
ection 4.2.2. The evaluation results, shown in Table 2, compare the
erformance of ECGencode model 2 with models from the PTB-XL
enchmark study by Strodthoff et al. (2021), which uses the same
valuation framework. The xresnet1d101 model was selected for com-
arison due to its highest AUC value in the benchmark. Additionally,
he lstm_bidir is included for its use of Bidirectional LSTM layers,
imilar to ECGencode model 2. For the same reasons as Strodthoff
t al. (2021), the Wavelet+NN model, which employs manual feature
xtraction, is reported to provide contrast with more conventional,
on-DL, methods.

While the PTB-XL benchmark study reports only the AUC metric
nd its confidence interval, ECGencode model 2’s results are expanded
ith the additional metrics that were discussed in Section 4.2.3. Con-

idering the overlapping AUC confidence intervals among the top-
erforming models, including ECGencode model 2, no significant differ-
nces were observed. However, when compared to the more traditional
15

avelet+NN model, a significant difference in performance is seen.
his demonstrates the effectiveness of the ECGencode model 2’s archi-
ecture, which was developed simply through intuitive configuration
nd latent space analysis, yielding a satisfactory model without exten-
ive tuning. Moreover, as outlined in Section 4.5, ECGencode model 2
perates with considerably fewer parameters compared to these other
odels.

.5. Computational efficiency analysis

One of the main advantages of using ECGencode as a deep learning
eature encoder resides in its ability to transform complex ECG inputs
nto a compact latent space with remarkable computational efficiency.
s shown in Sections 4.3 and 4.4, this latent space serves as the

oundation for ECG classification models that are competitive with
OTA alternatives in both binary and multi-label ECG classification
cenarios. This section aims to quantify the computational efficiency
n terms of FLOPs and model parameters. The computational metrics
re calculated using the formulas delineated in Section 3.3 and further
alidated by the keras-FLOPs library.1

4.5.1. Computational efficiency of binary ECG classification models
Table 3 presents a comparative analysis of the computational de-

mands for the evaluated binary ECG classification models in terms of
the number of parameters and FLOPs. ECGencode model 1 stands out
for its efficiency, requiring only 8242 parameters, a fraction (3.79%) of

hat is needed by the Attia model. It also operates with approximately
3 million FLOPs, just 12.39% of the Attia model’s requirements.
his reduction in parameters, along with the introduction of Spatial
aussian Noise Regularisation, helps prevent overfitting, supporting

he better-found model’s generalisation capabilities compared to Attia’s
odel, as discussed in Section 4.3.

The smaller number of parameters, offering lower storage require-
ents and reduced risk of overfitting, combined with the manageable
umber of FLOPs, offering lower CPU demands, make ECGencode
odel 1 well-suited for use on edge devices with limited computational

esources. Although AFibri-Net 3 has the lowest FLOPs count, it does so

1 https://pypi.org/project/keras-FLOPs/

https://pypi.org/project/keras-FLOPs/
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Table 2
Performance of various multi-label ECG classification models on identifying all 71 diagnostic labels from the PTB-XL test set (fold 10). ECGencode
model 2 underwent training across PTB-XL’s folds 1–9 for 1500 epochs. Metrics reported include AUC, Hamming loss and macro-averaged F1
score, sensitivity, specificity, and precision, with point estimates for the test sets and confidence intervals for AUC and F1 metrics derived
from 10,000 bootstrapping iterations. Thresholds for calculating Hamming loss, F1, sensitivity, specificity, and precision were obtained through
optimisation for the highest F1 score on the validation set (fold 9). Bold indicates the top AUC score, and asterisks (*) denote significantly
different scores based on non-overlapping confidence intervals with the highest AUC score. Benchmark models and their AUC values are sourced
from the PTB-XL benchmark study by Strodthoff et al. (2021), which only reports AUC and their confidence intervals.
Model AUC F1 Sensitivity Specificity Precision Hamming

ECGencode M2 0.9181 ± 0.0097 0.3265 ± 0.0214 0.3555 0.9779 0.3484 0.0276
xresnet1d101 0.9250 ± 0.0070 – – – – –
lstm_bidir 0.9140 ± 0.0080 – – – – –
Wavelet+NN 0.8490 ± 0.0130* – – – – –
,

Table 3
Comparative analysis of computational efficiency for the evaluated binary ECG clas-
sification models, highlighting ECGencode model 1’s minimal parameter count and
manageable FLOPs. The relative size of both parameter count and FLOPs from the
benchmark models compared to ECGencode is also provided.

Model Parameters FLOPs

ECGencode M1 8,242 (1x) ± 83M (1×)
Attia 217,350 (26.5x) ± 670M (8×)
AFibri-Net 3 191,106 (23x) ± 12M (.15×)

Table 4
Efficiency comparison of parameter counts among multi-label ECG classification models,
showcasing ECGencode model 2’s low parameter footprint amidst complex tasks. Rela-
tive parameter sizes for benchmark models are presented as multiples of ECGencode’s
metrics. The ‘‘Wavelet+NN’’ model employs a hybrid approach combining wavelet
transforms with neural networks, making a direct parameter count comparison not
applicable.

Model Parameters

ECGencode M2 133,495 (1×)
xresnet1d101 1,880,775 (14×)
lstm_bidir 2,330,629 (17.5×)
Wavelet+NN – (-)

at the cost of significantly poorer classification performance, as detailed
in Section 4.3. Its parameter count, while less than the Attia model, is
still 23 times higher than ECGencode model 1. Notably, a significant
portion of the FLOPs in ECGencode model 1 is due to the large kernel
in the initial convolution layer, which is responsible for nearly 80M of
the 83M FLOPs. Optimising this layer, especially by reducing the kernel
sizes, could drastically decrease the FLOPs if desired, although the risk
of significantly worse performance, like the AFibri-Net 3 model, should
be considered.

4.5.2. Computational efficiency of multi-label ECG classification models
Due to the lack of publicly available libraries that support FLOPs

calculations for LSTM layers and complex models such as those in the
PTB-XL benchmark paper (Strodthoff et al., 2021), this computational
efficiency analysis is restricted to parameter counts.

Table 4 summarises these parameter requirements of the second EC-
Gencode model in contrast to the xresnet1d101 and lstm_bidir models
from the PTB-XL benchmark paper (Strodthoff et al., 2021). Despite
incorporating a computationally demanding LSTM layer, the second
ECGencode model necessitates only 7.13% of the parameters as com-
pared to the xresnet1d101 model. When compared to the lstm_bidir
model, the parameter count for the second ECGencode drops to only
5.73%. This significant reduction in parameters is attributed to the
LSTM layer requiring less complexity as its input complexity is already
significantly reduced by ECGencode. Given the Wavelet+NN model
employs a hybrid approach combining wavelet transforms with neural
networks, a direct parameter count comparison is not applicable.

5. Discussion

SOTA models in ECG analysis face various training and inference
challenges due to their large parameter counts and high computational
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demands. These challenges are particularly pronounced in environ-
ments with limited resources, such as medical edge devices, limiting
their practical deployment. While some task-specific models have been
developed to significantly reduce computational efficiency and allow
for inference on edge devices, they are prone to significantly worse
performance, as shown for the AFibri-Net 3 model in this work. These
task-specific models also lack the versatility required for adopting them
to other tasks and hardware settings.

Moreover, whilst some complex models allow for adjusting model
complexity, such as controlling the amount of residual blocks in ResNets
this process is not straightforward due to the absence of an intuitive
relation between the model configuration parameters and the specific
ECG analysis tasks. This either results in the need for a computationally
expensive optimisation process, which increases the risk of overfitting
and bias learning, or more often, the use of default and overly complex
configurations. These deep models also offer limited intrinsic inter-
pretability in their learned parameters, requiring post hoc visualisations
for some basic model interpretability.

This work proposes ECGencode as a solution to these limitations,
offering a compact and computationally efficient deep learning feature
encoder specifically designed to be used as a building block for DL
ECG analysis models. Inspired by the FBCSP approach, ECGencode
enables intuitive model configuration and provides some intrinsic inter-
pretability of model parameters and decisions, as shown in Fig. 10 and
discussed in Section 3.5. ECGencode also maintains the ECG structure
within its 2D latent space representation which allows for intuitive
complexity configuration and lends itself to be used in various model
architectures. Minimal computational load for the feature extraction
is guaranteed through the use of depthwise and depthwise separable
convolutions in the compact ECGencode architecture. Additionally,
ECGencode’s novel Spatial Gaussian Noise regularisation technique en-
hances generalisation performance, positioning it as a versatile tool for
various ECG analysis tasks without the trade-offs commonly associated
with models optimised for computational efficiency.

These claims in favour of ECGencode are validated by incorpo-
rating it into two distinct ECGencode models. ECGencode model 1
is configured for a low parameter and FLOPs count while achieving
performance on par with SOTA models for three distinct binary ECG
classification tasks: detecting AFib-related patients, NSR AFib detec-
tion, and new-onset AFib prediction. The results from Section 4.3
demonstrate ECGencode power of matching or even outperforming
the complex SOTA model by Attia, Noseworthy, et al. (2019) whilst
significantly outperforming the computationally efficient AFibri-Net 3
model by Phukan et al. (2023). A computational efficiency analysis
of the trainable parameters and FLOPs revealed a tenfold saving in
FLOPs and over 20 times saving in parameters compared to the model
by Attia, Noseworthy, et al. (2019). When compared to the AFibri-Net
3 model by Phukan et al. (2023), the trainable parameters remained
significantly reduced, but the FLOPs count was higher. It was high-
lighted this is due to the contributions of the large kernels in the
temporal filter of ECGencode and that it is possible to adjust this
configuration to match the AFibri-Net 3 FLOPs count, although this

could result in sub-par performance, like the AFibri-Net 3 model. A
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preliminary intrinsic interpretation of the temporal and spatial filters
from ECGencode reveals they perform as expected, and common post
hoc visualisation tools highlight the model predictions are based on
areas of the ECG known to be representative of the task.

ECGencode model 2 showcases that a complex model incorporating
ECGencode can be built through intuitive reasoning of the model
configuration and 2D latent space representation of ECGencode. In
particular, ECGencode model 2 is a CNN-LSTM model which performs
on par with the benchmark for PTB-XL multi-label classification of
71 classes without requiring complex configuration or optimisation.
Additionally, even with this complex LSTM functionality added, it still
boasts a significant reduction in model parameters compared to the
benchmark models.

6. Conclusion

This work introduced ECGencode, an innovative deep learning fea-
ture encoder designed for computationally efficient extraction of com-
pact and informative feature vectors from raw ECG data. ECGencode
tackles the challenges found in the complex, resource-intensive deep
learning models prevalent in ECG signal analysis through various ECG-
specific optimisations. First, ECGencode is an ECG-specific, expert-
inspired and compact architecture, based on the FBCSP method. This,
in combination with a novel Spatial Gaussian Noise layer for regu-
larisation across both lead and channel dimensions, results in SOTA
matching performance across various ECG analysis tasks. Secondly,
ECGencode boasts an over tenfold reduction in FLOPs when compared
to SOTA performing models in these tasks. This makes ECGencode mod-
els particularly suitable for inference on resource-constraint medical
edge devices and provides them with favourable training behaviour.
Thirdly, ECGencode’s architectural parameters provide an intuitive re-
lation with the ECG analysis task and its latent space retains the familiar
2D ECG structure. This enables easy configuration of the feature en-
coder for various ECG analysis model architectures. Lastly, as a compact
architecture with minimal parameters based on the FBCSP approach,
ECGencode lends itself to intrinsic learned parameter interpretations
and integrates effectively with existing post hoc model visualisations.
The temporal component of ECGencode can be visualised to confirm
both high-frequency and low-frequency alternations are derived, while
the learned kernel weights of the spatial component allow for a to-
pographic visualisation of the input lead importance in generating
augmented leads. Post hoc model visualisation techniques, such as
gradient-based class activation maps and saliency maps, highlight the
P-wave focus for positive AFib predictions. Although these preliminary
visualisations are promising, additional medical research is required for
comprehensive validation.

More specifically, in binary ECG classification tasks like AFib de-
tection during NSR and pre-onset prediction, ECGencode model 1
efficiently operates with only 3.79% of the parameters and 12.39% of
the FLOPs required by the SOTA model of Attia, Noseworthy, et al.
(2019), while delivering comparable, or even improved, performance.
For multi-label ECG classification of 71 diagnostic statements, the dis-
cussed ECGencode model 2 with added LSTM functionality matched the
op PTB-XL benchmark models (Strodthoff et al., 2021) in performance
hile using less than a tenth of the parameters.

Whilst the experiments from this work validate the claimed benefits
f ECGencode, and the efficient ECGencode model 1 can prove valuable
s an AFib risk predictor and screening selection tool for use on medical
dge devices, ECGencode can prove even more valuable in future work.
ne such research direction includes pre-training the feature encoder

hrough self-supervised learning for learning general ECG features. This
eneral feature encoder can then serve as a robust initialisation for
asks with such limited data that traditional training is not possible.
ore interesting studies can be done on the intrinsic model interpre-

ation techniques ECGencode offers, by incorporating them into a live
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imeline scrubbing tool validating its relevance by medical clinicians,
and potentially revealing new medical insights. Furthermore, ECGen-
code model 1 results, with the best AUC and sensitivity for all tasks,
suggest it can be optimised to significantly beat SOTA performance
in these or other tasks whilst continuing to enjoy its other benefits.
One such optimisation may be the inclusion of known biomarkers and
traditionally derived features in the latent space of ECGencode to create
a hybrid feature encoder.

In conclusion, ECGencode’s benefits make it a valuable addition
to the ECG signal analysis domain, especially suited for deployment
in environments with constrained computational resources or as an
easy-to-configure feature encoder for benchmark models in new ECG
analysis tasks. Given its versatility, efficiency and interpretable model
architecture, it positions itself as a fundamental feature extraction tool
in the toolbox of ECG analysis.
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