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16 IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italia and Dipartimento di Scienze

Biomediche e Neuromotorie, Università di Bologna, Bologna, Italia, 17 CISSS Chaudière-Appalache, Levis,

Canada, 18 Melbourne MS Centre, Department of Neurology, Royal Melbourne Hospital, Melbourne,

Australia, 19 CORe, Department of Medicine, University of Melbourne, Melbourne, Australia, 20 Amiri

Hospital, Sharq, Kuwait, 21 Neuro Rive-Sud, Quebec, Canada, 22 Box Hill Hospital, Melbourne, Australia,

23 19 Mayis University, Samsun, Turkey, 24 University Newcastle, Newcastle, Australia, 25 Academic MS

Center Zuyderland, Department of Neurology, Zuyderland Medical Center, Sittard-Geleen, The Netherlands,

26 School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands,

27 American University of Beirut Medical Center, Beirut, Lebanon, 28 Azienda Sanitaria Unica Regionale

Marche - AV3, Macerata, Italy, 29 Cliniques Universitaires Saint-Luc, Brussels, Belgium, 30 Centro Hospitalar

Universitario de Sao Joao, Porto, Portugal, 31 Department of Neurology, Buffalo General Medical Center,

Buffalo, United States of America, 32 Hospital Clinic de Barcelona, Barcelona, Spain, 33 Nemocnice Jihlava,

Jihlava, Czech Republic, 34 Azienda Ospedaliera di Rilievo Nazionale San Giuseppe Moscati Avellino,

Avellino, Italy, 35 Dept. of Rehabilitation, CRFF Mons. Luigi Novarese, Moncrivello, Italy, 36 MS center, UOC

Neurologia, ARNAS Garibaldi, Catania, Italy, 37 Bakirkoy Education and Research Hospital for Psychiatric

and Neurological Diseases, Istanbul, Turkey, 38 Ospedali Riuniti di Salerno, Salerno, Italy, 39 Razi Hospital,

Manouba, Tunisia, 40 Hospital Universitario Donostia, San Sebastián, Spain, 41 Hospital de Galdakao-

Usansolo, Galdakao, Spain, 42 Universitary Hospital Ghent, Ghent, Belgium, 43 The Alfred Hospital,

Melbourne, Australia, 44 St. Michael’s Hospital, Toronto, Canada, 45 University Hospital Reina Sofia,

Cordoba, Spain, 46 Koc University, School of Medicine, Istanbul, Turkey, 47 College of Medicine & Health

Sciences and Sultan Qaboos University Hospital, SQU, Oman, 48 Groene Hart Ziekenhuis, Gouda,

PLOS DIGITAL HEALTH

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000533 July 25, 2024 1 / 25

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: De Brouwer E, Becker T, Werthen-

Brabants L, Dewulf P, Iliadis D, Dekeyser C, et al.

(2024) Machine-learning-based prediction of

disability progression in multiple sclerosis: An

observational, international, multi-center study.

PLOS Digit Health 3(7): e0000533. https://doi.org/

10.1371/journal.pdig.0000533

Editor: Ryan S McGinnis, Wake Forest University

School of Medicine, UNITED STATES OF AMERICA

Received: June 29, 2023

Accepted: May 14, 2024

Published: July 25, 2024

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pdig.0000533

Copyright: © 2024 De Brouwer et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data set used in

this study is available upon request to the MSBase

principal investigators included in the study.

https://orcid.org/0000-0003-0608-0155
https://orcid.org/0000-0003-4564-1672
https://orcid.org/0000-0003-2902-5589
https://orcid.org/0000-0002-9249-3185
https://orcid.org/0000-0002-2851-8157
https://orcid.org/0000-0002-8305-3209
https://orcid.org/0000-0002-4476-4016
https://orcid.org/0000-0002-6066-3899
https://doi.org/10.1371/journal.pdig.0000533
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pdig.0000533&domain=pdf&date_stamp=2024-07-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pdig.0000533&domain=pdf&date_stamp=2024-07-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pdig.0000533&domain=pdf&date_stamp=2024-07-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pdig.0000533&domain=pdf&date_stamp=2024-07-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pdig.0000533&domain=pdf&date_stamp=2024-07-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pdig.0000533&domain=pdf&date_stamp=2024-07-25
https://doi.org/10.1371/journal.pdig.0000533
https://doi.org/10.1371/journal.pdig.0000533
https://doi.org/10.1371/journal.pdig.0000533
http://creativecommons.org/licenses/by/4.0/


Netherlands, 49 Universidade Metropolitana de Santos, Santos, Brazil, 50 University of Debrecen, Debrecen,

Hungary, 51 Liverpool Hospital, Sydney, Australia, 52 Hospital Fernandez, Capital Federal, Argentina,

53 King Fahad Specialist Hospital-Dammam, Khobar, Saudi Arabia, 54 Royal Hobart Hospital, Hobart,

Australia, 55 South Eastern HSC Trust, Belfast, United Kingdom, 56 Geneva University Hospital, Geneva,

Switzerland, 57 Jahn Ferenc Teaching Hospital, Budapest, Hungary, 58 St Vincent’s University Hospital,

Dublin, Ireland, 59 University of Western Australia, Nedlands, Australia, 60 Hospital General Universitario de

Alicante, Alicante, Spain, 61 Emergency Clinical County Hospital Pius Brinzeu, Timisoara, Romania and

University of Medicine and Pharmacy Victor Babes, Timisoara, Romania, 62 Semmelweis University

Budapest, Budapest, Hungary, 63 Concord Repatriation General Hospital, Sydney, Australia, 64 AZ Alma

Ziekenhuis, Sijsele - Damme, Belgium, 65 Royal Victoria Hospital, Belfast, United Kingdom, 66 AHEPA

University Hospital, Thessaloniki, Greece, 67 BAZ County Hospital, Miskolc, Hungary, 68 Mater Dei Hospital,

Msida, Malta

☯ These authors contributed equally to this work.

* liesbet.peeters@uhasselt.be

Abstract

Background

Disability progression is a key milestone in the disease evolution of people with multiple

sclerosis (PwMS). Prediction models of the probability of disability progression have not yet

reached the level of trust needed to be adopted in the clinic. A common benchmark to

assess model development in multiple sclerosis is also currently lacking.

Methods

Data of adult PwMS with a follow-up of at least three years from 146 MS centers, spread

over 40 countries and collected by the MSBase consortium was used. With basic inclusion

criteria for quality requirements, it represents a total of 15, 240 PwMS. External validation

was performed and repeated five times to assess the significance of the results. Transpar-

ent Reporting for Individual Prognosis Or Diagnosis (TRIPOD) guidelines were followed.

Confirmed disability progression after two years was predicted, with a confirmation window

of six months. Only routinely collected variables were used such as the expanded disability

status scale, treatment, relapse information, and MS course. To learn the probability of dis-

ability progression, state-of-the-art machine learning models were investigated. The dis-

crimination performance of the models is evaluated with the area under the receiver

operator curve (ROC-AUC) and under the precision recall curve (AUC-PR), and their cali-

bration via the Brier score and the expected calibration error. All our preprocessing and

model code are available at https://gitlab.com/edebrouwer/ms_benchmark, making this

task an ideal benchmark for predicting disability progression in MS.

Findings

Machine learning models achieved a ROC-AUC of 0�71 ± 0�01, an AUC-PR of 0�26 ± 0�02, a

Brier score of 0�1 ± 0�01 and an expected calibration error of 0�07 ± 0�04. The history of dis-

ability progression was identified as being more predictive for future disability progression

than the treatment or relapses history.
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Conclusions

Good discrimination and calibration performance on an external validation set is achieved,

using only routinely collected variables. This suggests machine-learning models can reliably

inform clinicians about the future occurrence of progression and are mature for a clinical

impact study.

Author summary

Models that accurately predict disability progression in individuals with multiple sclerosis

(MS) have the potential to greatly benefit both patients and medical professionals. By aid-

ing in life planning and treatment decision-making, these predictive models can enhance

the overall quality of care for people with MS. While previous academic literature has

demonstrated the feasibility of predicting disability progression, recent systematic reviews

have shed light on several methodological limitations within the existing research. These

reviews have highlighted concerns such as the absence of probability calibration assess-

ment, potential biases in cohort selection, and insufficient external validation. Further-

more, the datasets examined often include variables that are not routinely collected in

clinical settings or readily available for digital analysis. Consequently, it remains uncertain

whether the models identified in these systematic reviews can be effectively implemented

in a clinical context. Compounding this issue, the lack of availability of data and analysis

code makes it challenging to compare results across different publications. To address

these gaps, this study endeavors to develop and validate a machine-learning-based predic-

tion model using the largest longitudinal patient cohort ever assembled for disability pro-

gression prediction in MS. Leveraging data from MSBase, a comprehensive international

data registry comprising information from multiple MS centers, we aim to create robust

models capable of accurately predicting the probability of disability progression. The inte-

gration of machine learning models into routine clinical practice has the potential to

greatly enhance treatment decision-making and life planning for individuals with MS.

The models developed through this study could be subsequently evaluated in a clinical

impact study involving MS centers participating in MSBase. This research represents a

significant advancement towards the practical application of machine learning models in

improving the treatment and care of individuals with MS.

Introduction

Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system [1]. A

recent census estimated more than 2�8 million people are currently living with MS [2], which

causes a wide variety of symptoms such as mobility problems, cognitive impairment, pain, and

fatigue. Importantly, the rate of disability progression is highly variable among people with MS

(PwMS) [3]. This heterogeneity makes the personalization of care difficult and prognostic

models are thus of high relevance for medical professionals, as they could contribute to better

individualized treatment decisions. Indeed, a more aggressive treatment could be prescribed

in case of a negative prognosis. Moreover, surveys indicate that PwMS are interested in their

prognosis [4], which could help them with planning their lives.
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There is a large amount of literature on prognostic MS models [5–10]. Some prognostic

models are or were at some point available as web tools. However, with the exception of Tin-

tore et al. [10] that focuses on conversion to MS, none have been integrated into clinical prac-

tice and no clinical impact studies have been performed [5, 6]. Because MS is a complex

chronic disease that is often treated within a multidisciplinary context, the performance of a

prognostic model studied in isolation from its clinical context gives limited information on its

clinical relevance [11, 12]. Recent systematic reviews have highlighted several methodological

issues within the current literature [5, 6], such as the lack of calibration or a possible significant

bias in the cohort selection. Moreover, the investigated datasets are rarely made available.

They furthermore often contain variables that are not routinely collected within the current

clinical workflow (e.g. neurofilament light chain) or are not readily available for digital analysis

(e.g. Magnetic Resonance Imaging (MRI) images).

In this article, we aimed at developing a model with three specific goals. Firstly, it should

predict the probability (a value between 0 and 1) of disability progression for a PwMS within

the next two years, instead of just a binary target (0 or 1, i.e., disease progression or no disease

progression). Secondly, it should be applicable to a well-defined, relevant, and large patient

population. Thirdly, all variables used in the model should be available in routine clinical care.

A successful combination of these three goals would justify a clinical impact study of the

model and represent a significant step towards clinical applicability.

With this aim in mind, we developed and externally validated machine learning models to

predict disability progression after two years for PwMS, using commonly-available clinical fea-

tures. For this task we represented disability progression as a binary variable indicating if a

confirmed disability progression will occur within the next two years, as defined by Kalincik

et al. [13]. We trained the models using the largest longitudinal patient cohort to date for dis-

ability progression prediction in MS. The cohort was extracted from MSBase, a large interna-

tional data registry containing data from multiple MS centers. We evaluated the performance,

including the predicted probabilities, of different machine learning architectures and found

they could achieve a ROC-AUC of 0�71 ± 0�01, an AUC-PR of 0�26 ± 0�02, a Brier score of

0�1 ± 0�01, and an expected calibration error of 0�07 ± 0�04.

Importantly, and in contrast with the available literature on disease progression models for

MS (except for one model to predict relapses [14]), our data pre-processing pipeline and our

models check all the boxes of the Transparent Reporting for Individual Prognosis Or Diagno-

sis (TRIPOD) checklist. Our work therefore provides an important step towards the integra-

tion of artificial intelligence (AI) models in MS care. The outline of our approach is presented

in Fig 1.

Results

Cohort statistics

In this multi-center international study, we used data of people with MS from 146 centers

spread over 40 different countries and compiled in the MSBase registry [15] as of September

2020. All data were prospectively collected during routine clinical care predominantly from

tertiary MS centres [16].

The inclusion criteria for the initial extraction of the data from MSBase were: having at

least 12 months of follow-up, being aged 18 years or older, and diagnosed with relapsing remit-

ting (RR) MS, secondary progressive (SP) MS, primary progressive (PP) MS. Clinically-iso-

lated syndrome (CIS) patients were excluded. This resulted in an initial cohort of 40,827

patients.
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The clinical trajectory of each patient in the cohort consisted of multiple, potentially over-

lapping, clinical episodes, that allowed to artificially augment the dataset. We defined a clinical

episode as the conjunction of an observation window, a baseline EDSS measurement, and a

disability progression label. Details about the construction of the clinical episodes are given in

the Materials and Methods. For each episode, we required a minimum of three EDSS measure-

ments over the last three years and three months at the time of prediction. This inclusion crite-

rion represents the typical follow-up frequency for PwMS, which is once or twice a year. Prior

work showed that longitudinal clinical history was beneficial for prediction of disability pro-

gression [17]. The final cohorts resulted in a total of 283,115 valid episodes from 26,246

patients. Basic characteristics of the final cohort are shown in Table 1.

Model performance

The performance of the predictive models assessed on the external test cohort is reported in

Tables 2–4. A visual illustration of the discrimination performance is shown in Fig 2. A tempo-

ral-attention-based model reached an area under the receiver operating characteristic curve

(ROC-AUC) of 0�71 ± 0�01 and an area under the precision-recall curve (AUC-PR) of

0�26 ± 0�02, with a calibration error of 0�07 ± 0�04 on the external test cohort.

To assess the reliability of those results on specific subgroups of patients, we also evaluated

the performance for each different MS course at the time of prediction (Table 3) and different

baseline EDSS (EDSSt=0) (Table 4). The relapsing-remitting (RR) category showed a perfor-

mance similar to the full cohort. We observed a decreased discrimination performance in the

progressive and secondary progressive groups. We conjecture that this is due to the low sample

size in these groups. A similar effect was observed when segmenting by disability severity, with

the group of higher severity showing a lower discrimination performance. In the supporting

information, we also present a segmentation of the results by the medical center of origin of

the patients (S1, S2 and S3 Figs), indicating a higher variability of the results for small centers.

The calibration of the different models was assessed from the Brier score and the expected

calibration errors (ECE), which are reported in Tables 2–4. In Fig 3, we report the calibration

plot of the longitudinal attention model on the external test cohort. We observed a very good

calibration of the predicted risks in the range between 0 and 0.3, suggesting an excellent reli-

ability of the predictive model. The calibration curves of other models are given in the support-

ing information (S4 Fig) along with a segmentation of the calibration of the models by clinical

subgroups (S5 Fig). A comprehensive comparison of all considered models is available in S2,

S3, S4, S5, S6 and S7 Tables.

Feature importance

The importance of the different variables used in the machine learning models was investi-

gated. Fig 4 shows the results of a permutation importance test on the multi-layer percepetron

(MLP) model, by assessing the loss in discrimination performance when a variable is shuffled

over the test set [19]. Fig 4 ranks the features in decreasing order of importance. We found the

most important variables to be the baseline EDSS at prediction time, the number of years since

1990 as well as the mean EDSS and Kurtzke Functional Systems Score (KFS) over the last 3

years. The complete results are available in S8 Table.

The baseline EDSS was expected to be important in the prediction, as the definition of the

progression event directly depends on it (as seen in Eq (1)). The time since 1990 suggests a

change of behavior of the disease over the years that could be explained by progress in clinical

care or enhanced diagnosis of earlier and milder forms of the disease. The importance of the

previous values of EDSS and KFS demonstrates an added value of considering longitudinal
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Fig 1. Overall layout of our approach. A: Representation of a clinical trajectory of an individual person with multiple sclerosis (PwMS). The trajectory

consists of, among others, relapses, EDSS values, and treatment durations collected over time. The full list of used variables is given in the Materials and

Methods. The trajectory of each patient is divided into an observation window (the available clinical history for the prediction) and the future

trajectory, which is used to compute the confirmed disability progression label at two years (wc). B: For an individual PwMS, the clinical trajectory in

the observation window is extracted and used in the machine learning model to predict a well-calibrated probability of disability progression at two

years. Based on the predictions, clinicians can adjust their clinical decisions accordingly. C: The MSbase dataset contains clinical data from 146

individual MS clinical centers with different clinical practice. We leveraged this feature by creating an external validation cohort of patients. We split the

data per clinic, with 60% of patients used for training the model, 20% for optimizing the hyper-parameters (validation set) and 20% for external

validation. The results presented in this work are all on the external validation cohort.

https://doi.org/10.1371/journal.pdig.0000533.g001
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data, as already shown in De Brouwer et al. [17]. Remarkably, no variables including disease

modifying treatments (DMT) were given a significant importance score.

Discussion

The models investigated in this study provide a significant advance towards deploying AI in

clinical practice in MS. After validation of the results in a clinical impact study, they have the

Table 1. Summary statistics of the cohort of interest after extraction from MSBase (Extracted Cohort) and after

patient and sample selection (Final Cohort). For all variables the value at the last recorded visit was used. KFS stands

for Kurtzke Functional Systems Score, DMT for Disease Modifying Therapy, CIS for Clinically Isolated Syndrome.

Variable Cohort 3 EDSS

Patients (% female) 26,246 (71�8)

Age, Yearsa 42�8 (10�8)

Age at MS onset, yearsa 31�3 (8�9)

Disease duration, yearsa 11�6 (8�0)

Education status, % higherc 18�2 (65�1)

First symptom, none given (%) 13�7

supratentorial (%) 28�2

optic pathways (%) 22�6

brainstem (%) 24�3

spinal cord (%) 26�4

MS course /

CIS (%) 0

Relapsing-Remitting (%) 83�5

Primary Progressive (%) 5�0

Secondary Progressive (%) 11�5

EDSSa 3�0 (2�1)

EDSSt=0 category /

EDSSt=0� 5�5 (%) 83�9

EDSSt=0 > 5�5 (%) 16�1

Annualized relapse rateb 0�82 [0�43, 1�47]

KFS Scores /

pyramidalb 2 [1, 3]

cerebellarb 0 [0, 2]

brainstemb 0 [0, 1]

sensoryb 1 [0, 2]

sphinctericb 0 [0, 1]

visualb 0 [0, 1]

cerebralb 0 [0, 1]

ambulatoryb 0 [0, 1]

DMT /

none 23�5

low-efficacy 51�3

moderate-efficacy 13�6

high-efficacy 11�6

high induction 7�2

a: mean ± standard deviation
b: median (quartiles)
c: % missing data

https://doi.org/10.1371/journal.pdig.0000533.t001
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potential to let the research in MS benefit from the advantages of advanced predictive model-

ing capabilities.

Our work confirms that predicting the probability of disability progression of MS patients

is feasible. Importantly, despite MS progression being inherently stochastic, this study shows

that relevant historical clinical data, collected as part of routine clinical care, can lead to high

discrimination performance and good calibration (Fig 3), which is crucial in healthcare appli-

cations. Combined with our rigorous benchmarking, external validation, and our strict adher-

ence to the TRIPOD guidelines, this points towards a readiness of these models to be tested in

a clinical impact study. Such study would evaluate the performance of these models in real-

world clinical practice, compare them with the predictions of clinicians, and assess the value of

such a prediction for PwMS. Over- or under-prediction of the probability of progression could

indeed lead to unnecessary emotional stress or optimism.

Table 2. Summary statistics of the performance measures (averages ± standard deviations). Baseline performance are 0�5 for the area under the receiver operating

curve (ROC-AUC) and 0�11 for the area under the precision-recall curve (AUC-PR). " indicates higher is better. # indicates lower is better. p-value for ROC-AUC between

Ensemble and MLP: 0�152 for unpaired t-test. p-value for AUC-PR between Attention and MLP: 0.452 for unpaired t-test.

Model ROC-AUC " AUC-PR " Brier # ECE #

Ensemble 0�71 ± 0�01 0�25 ± 0�02 0�10 ± 0�01 0�06 ± 0�05

Attention 0�71 ± 0�01 0�26 ± 0�02 0�10 ± 0�01 0�07 ± 0�04

Bayesian NN 0�71 ± 0�01 0�25 ± 0�01 0�10 ± 0�01 0�08 ± 0�04

MLP 0�70 ± 0�01 0�24 ± 0�02 0�10 ± 0�01 0�09 ± 0�03

https://doi.org/10.1371/journal.pdig.0000533.t002

Table 4. Results for disability progression prediction for different baseline Expanded Disability Status Scale score (EDSSt=0), EDSSt=0� 5�5 and>5�5. " indicates

higher is better. # indicates lower is better. We report averages ± standard deviations computed over the different folds. Traning size of the different groups: EDSSt=0�

5�5 = 185,556 episodes (16,282 patients); EDSSt=0 > 5�5 = 34,848 episodes (4,686 patients).

Model EDSSt=0 ROC-AUC " AUC-PR " Brier # ECE #

Attention EDSSt=0� 5�5 0�72 ± 0�01 0�26 ± 0�01 0�09 ± 0�0 0�07 ± 0�04

Attention EDSSt=0 > 5�5 0�65 ± 0�01 0�27 ± 0�04 0�15 ± 0�01 0�07 ± 0�02

Bayesian NN EDSSt=0� 5�5 0�72 ± 0�01 0�25 ± 0�01 0�09 ± 0�0 0�08 ± 0�04

Bayesian NN EDSSt=0 > 5�5 0�64 ± 0�02 0�26 ± 0�03 0�15 ± 0�01 0�11 ± 0�03

MLP EDSSt=0� 5�5 0�71 ± 0�01 0�24 ± 0�01 0�1 ± 0�01 0�09 ± 0�03

MLP EDSSt=0 > 5�5 0�63 ± 0�01 0�26 ± 0�04 0�15 ± 0�02 0�09 ± 0�03

https://doi.org/10.1371/journal.pdig.0000533.t004

Table 3. Results for disability progression prediction per MSCourse (Primary Progressive (PP), Relapsing Remitting (RR), and Secondary Progressive (SP)), for the

best models. " indicates higher is better. # indicates lower is better. We report averages ± standard deviations computed over the different folds. Training sizes of different

groups: PP = 10,976 episodes (1,192 patients); RR = 185,724 episodes (16,268 patients); SP = 23,704 episodes (2,402 patients).

Model MSCourse ROC-AUC " AUC-PR " Brier # ECE #

Attention PP 0�65 ± 0�01 0�33 ± 0�04 0�16 ± 0�01 0�07 ± 0�02

Attention RR 0�70 ± 0�01 0�21 ± 0�01 0�09 ± 0�01 0�06 ± 0�03

Attention SP 0�65 ± 0�01 0�33 ± 0�03 0�17 ± 0�01 0�10 ± 0�05

Bayesian NN PP 0�66 ± 0�01 0�34 ± 0�03 0�16 ± 0�01 0�09 ± 0�05

Bayesian NN RR 0�70 ± 0�01 0�20 ± 0�01 0�09 ± 0�01 0�09 ± 0�03

Bayesian NN SP 0�64 ± 0�01 0�32 ± 0�02 0�17 ± 0�01 0�11 ± 0�02

MLP PP 0�63 ± 0�03 0�32 ± 0�05 0�16 ± 0�01 0�09 ± 0�03

MLP RR 0�69 ± 0�01 0�19 ± 0�0 0�09 ± 0�01 0�05 ± 0�02

MLP SP 0�63 ± 0�01 0�31 ± 0�02 0�17 ± 0�01 0�10 ± 0�04

https://doi.org/10.1371/journal.pdig.0000533.t003
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Fig 2. Visual representation of the discrimination performance. ROC-AUC curve, the AUC-PR curve, and distribution

of the estimated probability of relapse per group obtained with the temporal attention model.

https://doi.org/10.1371/journal.pdig.0000533.g002

Fig 3. Calibration diagram for the temporal attention model for the first data split. The val.prob.ci.2 function [18]

was used to generate this plot.

https://doi.org/10.1371/journal.pdig.0000533.g003
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Our attained ROC-AUC scores of 0.71 are compatible with those found in the literature,

which were found to range between 0.64 and 0.89 [5]. Our ROC-AUC scores are on the low

end of this range. This could be explained by several factors, such as: MSBase being a large and

diverse population; the use of a limited set of variables, since we constrained ourselves to vari-

ables that are collected during routine clinical care; a validation set-up where prediction is

done on patients from different clinics than those in the training set.

Previous work had only reported calibration graphically [20–22], with some of these models

showing good calibration. The possibility to achieve well-calibrated models is empirically con-

firmed in our study. As previous studies used different patient populations, covariates and predic-

tion targets, we could not directly compare our models with other models from previous studies.

The models developed in this study also suffer from limitations. First of all, several coun-

tries with good quality MS registries were not included because they are not part of the MSBase

initiative. Since treatment decisions can be country specific to a significant degree [23], it can

result in a difference of performance of the proposed models on countries not included in this

dataset. Yet, a clinical impact study in MS centers participating in MSBase would not suffer

from such external validity problems.

Second, our inclusion criteria required patients with good follow-up (at least one yearly

visit with EDSS measurement), so stable patients that do not visit regularly, or newly diagnosed

with MS cannot benefit from these models. This limits the application to patients with an

already established clinical MS history. This decision was motivated by prior work [17], which

showed that including clinical history as a predictor leads to more accurate prognosis, a find-

ing that we confirm in this study. A new dedicated model would be required for disability pro-

gression in patient with shorter clinical history. Nevertheless, MS being a chronic disease,

many patients would still satisfy our follow-up inclusion criteria (64% in the MSBase cohort).

Third, our analysis showed that the performance of the different models varied across dif-

ferent patient subgroups. When segmenting the cohort by disease course or by baseline EDSS,

Fig 4. Feature importance of different variables. Feature importance of different variables used in the MLP model

based on the average performance degradation on the ROC-AUC, AUC-PR, and ECE metrics. ‘EDSS at 0’ stands for

the Expanded Disability Status Scale score at the time of prediction. ‘Date Reference’ represents the date of prediction.

‘Mean EDSS’ stands for the average EDSS over the last 3 years. ‘MS Course = SP’ is a binary variable indicating that the

MS course is secondary progressive at the time of prediction. ‘Mean KFS x’ represents the corresponding variable in

the average Kurtzke Functional Systems Score over the last three years. ‘Std EDSS’ represents the standard deviation of

EDSS over the last 3 years.

https://doi.org/10.1371/journal.pdig.0000533.g004
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we found that the majority subgroup (i.e. relapsing-remitting and EDSSt=0� 5�5) showed a

better discrimination performance than subgroups with lower prevalence. We conjecture that

this difference of performance is due to the lower sample size in the minority subgroups. This

finding suggests a more limited value of the models for PwMS belonging to the minority sub-

groups. Nevertheless, the difference in calibration was not significantly different.

Fourth, the progression target that we defined in this work cannot realistically fully capture

the complexity of the disease and progression in MS cannot be summarized by EDSS only.

EDSS itself, as an attempt to quantify progression on one-dimensional scale, lacks the expres-

sivity to reliably encode the progression of the disease. What is more, we framed disability pro-

gression as a classification task, which is more granular than predicting future EDSS, but is

more amenable for machine learning. Despite these imperfections, the confirmed disability

progression label used in this work has been proven clinically useful [13], striking a good bal-

ance between abstraction and expressivity. Our work builds upon those concepts and inherits

their flaws and advantages.

Despite these imperfections, our models could potentially help patients in the planning of

their lives and provide a baseline for further research. An emphasis on reproducibility was

made, in an attempt to provide a strong benchmark for this important task. Thanks to the

excellent clinically-informed pre-processing pipeline, researchers can easily extend the current

models or propose their own, to continuously improve disease progression prediction. Exten-

sions to our method could include treatment recommendation or inclusion of other biomark-

ers available in a specific center.

Materials and methods

Resource availability

Lead contact. Further information and requests for resources should be directed to and

will be fulfilled by the lead contact, Liesbet Peeters (liesbet.peeters@uhasselt.be).

Materials availability. Trained machine learning models can be found at https://gitlab.

com/edebrouwer/ms_benchmark.

Cohort definition

In this multi-center international study, we used data of people with MS from 146 centers

spread over 40 different countries and compiled in the MSBase registry [15] as of September

2020. All data were prospectively collected during routine clinical care predominantly from

tertiary MS centres [16].

The inclusion criteria for the initial extraction of the data from MSBase were: at least 12

months of follow-up, aged 18 years or older, and diagnosed with relapsing remitting (RR) MS,

secondary progressive (SP) MS, primary progressive (PP) MS. Clinically-isolated syndrome

(CIS) patients were excluded from the study. This initial dataset contained a total of 44,886

patients.

In order to ensure data quality, some observations or patients were removed from that

cohort. Exclusion criteria include:

• Visits of the same patient that happened on the same day but had different expanded disabil-

ity status scale (EDSS) values were removed. All duplicate visits with the same EDSS for the

same visit date were removed (i.e., only one of the visits was retained). Visits from before

1970 were discarded.
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• Patients with the CIS MS course at their last visit were discarded. For those patients the rele-

vant question is whether or not they will progress to confirmed MS, which is a different

question than the one investigated in this work.

• Patients whose diagnosis date or age at first symptoms (i.e., MS onset date) was missing or

with invalid formatting were removed.

• Patient whose MS course or sex was not available were removed.

• Patients whose date of MS diagnosis, birth, MS onset, start of progression, clinic entry or

first relapse was higher than the extraction date were discarded.

• All visits whose visit date had an invalid format or was after the extraction date were

discarded.

These criteria resulted in a total number of 40, 827 patients in the cohort. A flowchart of the

patient inclusion for the final cohort is shown in Fig 5. Basic characteristics of the final cohorts

are shown in Table 1.

The clinical trajectory of each patient in the cohort consisted of multiple, potentially over-

lapping, clinical episodes, that allow to artificially augment the dataset. Clinical episodes are

defined in the sections below.

External validation was used to assess the performance of our predictive models by splitting

the cohort by MS center. The models were thus evaluated on patients from different clinics

than the ones used for training. An assessment of the heterogeneity across centers is available

in the supporting information (S3 Fig).

Definition of disability progression

Machine learning models were trained to predict a disability progression binary variable for

each clinical episode. In this section, we describe the definition of this binary disability

Fig 5. Flowchart of patient selection. Flowchart of patient selection for both at least three and at least six visits in the

last 3.25 years.

https://doi.org/10.1371/journal.pdig.0000533.g005
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progression label. Conceptually, disability progression is defined as a sustained increase in

EDSS over time.

Because assessing progression requires a baseline EDSS value to compare with, predictions

were made at visit dates where an EDSS measurement was recorded. In our notation, t = 0

denotes the time of the visits at which the prediction is made and the baseline EDSS is thus

written as EDSSt=0. Motivated by the non-linearity of the EDSS, unconfirmed disability pro-

gression (w = 1) after two years (t = 2y) is defined as follows [13]:

w ¼

1 if EDSSt¼2y � EDSSt¼0 � 1 � 5 & EDSSt¼0 ¼ 0

1 if EDSSt¼2y � EDSSt¼0 � 1 & 0 < EDSSt¼0 � 5 � 5

1 if EDSSt¼2y � EDSSt¼0 � 0 � 5 & EDSSt¼0 > 5 � 5

0 otherwise:

8
>>>><

>>>>:

ð1Þ

EDSSt = 2y represents the last recorded EDSS before t = 2 years. We chose a time horizon of

two years as a trade-off between short and long disease time scales. A short horizon would lead

to very few confirmed progression in the cohort, making predictive modeling difficult. A long

horizon would result in less patients satisfying the inclusion criteria, reducing the sample size.

It is a typical choice in the literature and is a relevant timescale for PwMS to plan their lives.

EDSS suffers from inter- and intra-rater variability [24]. The actual state of the patient also

fluctuates, because of e.g. recent relapses from which the patient could still (partly) recover.

We therefore studied confirmed disability progression (wc) for at least six months. Progression

was confirmed if all EDSS values measured within six months after the progression event and

the first EDSS measurement after two years lead to the same worsening target w = 1 according

to Eq (1). EDSS measurements within one month after a relapse were not taken into account

for confirming disability progression [13]. wc represents the target binary label used to train

the machine learning models.

Importantly, if progression (w = 1) could be confirmed because there were no EDSS mea-

surements after two years that could be used for confirmation, it was not considered a valid

target and no label would be derived. If progression could not be confirmed because an EDSS

used for confirmation led to w = 0, it counted as no confirmed disability progression (wc = 0).

If there was no disability progression (w = 0), no confirmation was needed to make it a valid

target. Note that even with confirmation for at least six months, around 20% of progression

events were expected to regress after more than five years [25]. However, disability progression

that lasts several years is a relevant outcome for a person with MS.

We note that the above definition of confirmed disability progression has been introduced

and clinical motivated in Kalincik et al. [13]. Although it is only a surrogate for the actual and

complex disease progression mechanism, it represents a clinically validated label that is more

amenable to statistical and machine learning analysis.

Definition of clinical episodes

For each patient, all visits can potentially represent a valid baseline EDSS for a progression epi-

sode. More generally, it is possible to divide the available clinical history of a patient in multi-

ple (potentially overlapping) episodes for which a disability progression label can be

computed. Each episode therefore consists of an observation window (the clinical history

before t = 0), a baseline EDSS (EDSSt=0) and a confirmation label (wc) as shown on Fig 6.

Extracting several episodes per patient allowed to significantly increase the number of data

points in the study.
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To assess the impact of follow-up on the performance of the models, we defined two

cohorts of patients, one with a minimum of three EDSS measurements, the other with a mini-

mum of six EDSS measurements over the last three years and three months of the observation

window. While our results focus on the cohort with a minimum of three EDSS measurements,

performance results for the other cohort are presented in the supporting information. The

three measurements requirement excluded patients who have a less than yearly (or biyearly)

EDSS follow-up frequency. The three additional months were chosen to allow for some margin

regarding when the yearly visit was planned.

Episodes were considered valid if they met the following criteria:

• A valid confirmed disability progression label (wc) could be computed at t = 0.

• The time at which the prediction were made was after 1990 (t0 > 1990, Jan 1st). This ensured

that we had a cohort of patients from decades were disease modifying therapies (DMTs)

were available [26].

• There were at least k EDSS measurement in the last last three years and three months of the

observation window, where k is either three or six measurements.

Examples of valid and invalid episodes are presented in Fig 7. The final cohorts resulted in a

total of 283,115 valid episodes from 26,246 patients, for a minimum of three EDSS measure-

ments and 166,172 valid episodes from 15,240 patients, for a minimum of six EDSS measure-

ments. For the 3-visits cohort, 11�64% of the episodes represented a progression event, hence

showing a mild imbalance. We addressed this imbalance by re-weighing each sample propor-

tionally to its label occurrence.

Fig 6. Problem Setup. A: For each patient episode, the available data for prediction consists of the baseline data and

the longitudinal clinical data in the observation window. Disability progression (wc) was assessed based on the

difference between the EDSS at time t = 0 and two years later (t = t2y) as defined in Eq (1). B: Based on the available

historical clinical data (in the observation time window), we aimed at training a model able to predict the probability p
(wc) of disability progression at a two years horizon (t2y).

https://doi.org/10.1371/journal.pdig.0000533.g006
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Variables

A set of clinical variables was retained from all available variables and included in the observa-

tion window of each episode. The following static (i.e., non-varying over time) variables were

selected: birth date, sex, MS onset date, education status (higher education, no higher

Fig 7. Examples of valid and non-valid episodes. The time is in years (y) and months (m). (a) Confirmed progression

after two years. The EDSS around 2y6m is not used to confirm the progression, because it occurs within 1 month after

a relapse. Progression is confirmed with the EDSS measurement around 4y. There are 3 EDSS measurements between

−3y and 0y, which is enough follow-up data. (b) This is not a valid sample: there are not enough EDSS measurements

between −3y and 0y. (c) This is not a valid sample: no confirmed progression because there are no EDSS values after

2y. (d) This is a valid sample: the EDSS decreases after 2y, so this counts as no disability progression. (e) This is a valid

sample: wu = 0, so no confirmation is needed.

https://doi.org/10.1371/journal.pdig.0000533.g007
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education, unknown) and the location of the first symptom (i.e., supratentorial, optic path-

ways, brainstem or spinal cord).

The following longitudinal variables were also collected in the observation window (i.e., for

times t� 0): EDSS, MS course (Relapsing Remitting MS (RRMS), Primary Progressive MS

(PPMS), Secondary Progressive MS (SPMPS), Clinically Isolated Syndrome (CIS)), relapse

occurrence, relapse position (pyramidal tract, brainstem, bowel bladder, cerebellum, visual

function, sensory), all Kurtzke functional system (KFS) scores, and Fampridine administra-

tion. The disease modifying therapies (DMT) and immunosuppressants were categorized into

low-efficacy, moderate-efficacy and high-efficacy:

• Low-efficacy: Interferons, Teriflunomide, Glatiramer, Azathioprine, Methotrexate.

• Moderate-efficacy: Fingolimod, Dimethyl-Fumarate, Cladribine, Siponimod, Daclizumab

• High-efficacy: Alemtuzumab, Rituximab, Ocrelizumab, Natalizumab, Mitoxantrone,

Cyclophosphamide.

Except for Mitoxantrone and Cyclophosphamide, we assumed that only one DMT was

administered at the same time. This implies that if a new DMT was started, the administration

of the previous DMT was considered to have ended, even if no end date was registered in the

data. Mitoxantrone and Cyclophosphamide can be administered in combination with another

DMT. Indeed, they are induction DMTs and are thus expected to have a long-term effect.

Therefore, only the start dates of these two DMTs were recorded. They were coded by a sepa-

rate category: highly active induction DMTs. Alemtuzumab and Cladribine are also induction

DMTs. In contrast to Mitoxantrone and Cyclophosphamide they are not combined with other

DMTs. If a new DMT was started, it was assumed that they were considered as not effective

and the start date of the new DMT was taken as the end date of Alemtuzumab or Cladribine.

MRI variables were not included due to high missingness. Indeed, the lesion counts were

available in less than 1�7% of the clinical episodes. The variable indicating whether the MRI was

normal, abnormal MS typical, or abnormal MS atypical was judged as not informative enough.

The above variables were then grouped in three feature sets: static, dynamic (summary sta-

tistics of the clinical history) and longitudinal [17]. These represent increasing quantity of

information regarding the clinical history of patients.

Grouping of the included clinical variables. The static feature set contains variables

available at t = 0 without taking into account possible previous values. Categorical variables

can be encoded as indicator variables. For example, sex is encoded as female ‘yes / no’ and

male ‘yes / no’. If that feature contains missing occurrences, the category ‘unknown’ is added.

EDSS and the KFS scores were treated as continuous variables, even though they are categori-

cal. The variables of the static feature set are: Sex, Age (years), Age at MS onset (years), Disease

duration (years), MS course at t = 0 (RRMS, SPMS, PPMS), EDSS at t = 0, Last used DMT at

t = 0, Use of induction DMT at t = 0, all KFS scores at t = 0, education status, first symptom

(supratentorial, optic pathways, brainstem, spinal cord or missing), time of prediction (years

since 1990), and time of diagnosis (years since 1990).

The dynamic feature set adds information about the clinical history before t = 0 (longitudi-

nal information) to the static dataset. It contains variables that are hand-engineered from the

longitudinal variables: number of visits in the last 3.25 years, the minimum and maximum in

the whole history (t� 0) of the EDSS and all KFS variables, mean and standard deviation over

the last 3.25 years of the EDSS and all KFS scores, oldest EDSS and KFS score measured in the

last 3.25 years, relapse rate over the whole history (number of relapses divided by the follow-

up period—since first clinical visit), time since the last relapse (years), presence of high-efficacy

DMT in the past, disease duration until a first DMT was administered, disease duration until
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an high-efficacy active DMT was administrated, time spent on a DMT during the disease dura-

tion (ratio of time on a DMT divided by the time since MS onset), and time since the last Fam-

pridine administration.

The variables representing the times since the last relapse, disease duration until a DMT

was administered, disease duration until a high-efficacy DMT was administrated, and time

since the last Fampridine administration were transformed according to an 1/(1 + t) scaling,

with t the actual time. If no time could be defined because, e.g., no DMT has ever been admin-

istered, the transformed variable was set to 0. If t< 0, which can happen because of erroneous

dates in the dataset, the transformed variable was also set to 1.

The longitudinal feature set contains the dates and values for the following variables: all

measured EDSS values and KFS scores, relapses occurrence (encoded as a binary variable set

to 1 when a relapse occurs), relapse position (brainstem, pyramidal tract or other), cumulative

relapse count, MS course, DMT administration (start and end dates), induction DMT admin-

istration (start date), and Fampridine administration. The timing of measurements was

expected to be informative [17, 23].

Models

The disability progression was framed as a classification problem. There exists a large literature

on machine learning models for clinical applications [27–29]. The following models were used

to predict disability progression: a multi-layer perceptron, a Bayesian neural network, and a

temporal attention model with continuous temporal embeddings [30]. This work was sup-

ported by a large project (Flanders AI) and those models were selected as the best performing

ones among a larger array of candidate models implemented by the different partners (see S1

Text for details). We followed the TRIPOD guidelines for reporting prognostic models [31].

The checklist can be found in Fig 8, at the end of this section.

The multi-layer perceptron model is a neural network architecture that takes as input the

static and dynamic features set, represented as a fixed length vector. The model is composed of

five hidden layers of dimension 128.

The Bayesian neural network has a similar architecture as the multi-layer perceptron, but

provides uncertainty estimates on the weights of the last hidden layer by incorporating

MCdropout [32]. This should confer better generalization capabilities as well as better

calibration.

The temporal attention model relies on a transformer architecture [30]. In contrast to the

previous models, this architecture is able to handle the longitudinal feature set, as it is able to

process the whole clinical time series. Each visit is encoded as a fixed-length vector along with

a mask for missing features and a continuous temporal embedding. This temporal embedding

allows for arbitrary time differences between measurements, and is therefore especially suited

for clinical time series where irregular sampling is most common. The static and the dynamic

feature sets were included in the model as extra temporal features that are repeated over the

patient history. Two temporal attention layers with dimension 128 were used. The code for

training the models and the final models are publicly available and can be found at https://

gitlab.com/edebrouwer/ms_benchmark.

Evaluation

The dataset was split into 60% for training, 20% for validation and 20% for testing. The valida-

tion data was used to optimize the hyperparameters of the models. Post-hoc calibration meth-

ods (Platt scaling [33] and isotonic regression [34]) were used on the validation set and the

performance evaluated on the test set.
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Fig 8. TRIPOD checklist.

https://doi.org/10.1371/journal.pdig.0000533.g008
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The test set was not seen during model training and hyperparameter optimization. To pro-

duce a measure of uncertainty of the performance of the models, the procedure of splitting the

data and training the models was repeated five times, corresponding to five splits.

As the dataset consists of patients from different centers, we split the dataset such that the

validation and test sets represent an external validation. Patients from the same centers were

therefore assigned to the same set (training, validation or test).

Discrimination was evaluated using the area under the receiving operator characteristic

(ROC-AUC) and the area under the precision recall curve (AUC-PR). Calibration was evalu-

ated numerically using the Brier score and the expected calibration error (ECE) with 20 bins.

Calibration was also evaluated visually using reliability diagrams.

The list of main hyperparameteres of each method, along with the values used for cross-val-

idation are presented in S9, S10, S11, S12, S13 and S14 Tables.

Tripod checklist

The design of the algorithms carefully followed the TRIPOD checklist as shown on Fig 8. All

points were checked or were not applicable in our study. This consists of the following:

• 6b. Report any actions to blind assessment of the outcome to be predicted.

• 11. Provide details on how risk groups were created, if done. No risk groups were identified in

this study.

• 14b. This can only be done for statistical models. However, we reported measures of vari-

ables importance.

• 17. Model updating. The models proposed here were not updates of previous iterations but

rather their first development.

Note also that no sample size calculations were performed; the size of this retrospective

dataset was fixed.

Supporting information

S1 Fig. ROC-AUC scores per MS center. ROC-AUC of individual centers in the test set

against the size of the center. As the size of the centers grows, the performance converges to

the average ROC-AUC. As the size of centers shrinks, the variability in performance increases,

which is statistically expected due to low sample size. Centers with no progression are not plot-

ted (because ROC-AUC is not defined in this case).

(PDF)

S2 Fig. Visualization of the different countries in the dataset. Each country is represented as

the set of vectors of static variables for each episode. A distance between countries was com-

puted using earth mover distance. The 2D visualization was obtained by using multidimen-

sional scaling (MDS).

(PNG)

S3 Fig. Visualization of the different clinical centers in the dataset. Each center is repre-

sented as the set of vectors of static variables for each episode. A distance between centers was

computed using earth mover distance. The 2D visualization was obtained by using multidi-

mensional scaling (MDS). We color each center by its country of origin.

(PNG)
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S4 Fig. Calibration diagram for all models. Calibration curves of the different models on the

test set (fold (e.g. train-test split) 0). Calibration was performed using Platt scaling [33]. A good

calibration was observed for all models. The discrepancy with the ideal line (dotted) in the

larger scores regime can be explained by the lowest number of data points in that region, lead-

ing to more variance.

(PDF)

S5 Fig. Predicted percentage of worsening per subgroup. Predicted percentage of worsening

per subgroup, for both MS Courses and EDSS larger or smaller than 5.5. Green is the actual

prevalence for the age groups on the x-axis, and red and purple are model predictions. This

shows the calibration performance for different subgroups. An acceptable discrepancy is

observed (of maximum 3 points), and a tendency of the models to underestimate the preva-

lence of disability progression.

(PDF)

S1 Table. Summary statistics of the patients cohort. Summary statistics of the cohort of

interest after patient and sample selection. For all variables the value at the last recorded visit

was used. KFS stands for Kurtzke Functional Systems Score, DMT for Disease Modifying

Therapy, CIS for Clinically Isolated Syndrome.

(PDF)

S2 Table. Summary statistics of the performance measures (Cohort with minimum 3 vis-

its). ROC-AUC, AUC-PR, Brier Score and ECE of all models (averages ± standard deviations).

Cohort of patients with a least 3 visits with EDSS in the last 3.25 years.

(PDF)

S3 Table. Summary statistics of the performance measures (Cohort with minimum 6 vis-

its). ROC-AUC, AUC-PR, Brier Score and ECE of all models (averages ± standard deviations).

Cohort of patients with a least 6 visits with EDSS in the last 3.25 years.

(PDF)

S4 Table. Summary statistics of the performance measures on different MS subgroups

(Cohort with minimum 3 visits). ROC-AUC, AUC-PR, Brier Score and ECE of all models on

the different MS course subgroups (averages ± standard deviations). Primary Progressive (PP),

Relapsing Remitting (RR) and Secondary Progressive are considered (SP). Cohort of patients

with a least 3 visits with EDSS in the last 3.25 years.

(PDF)

S5 Table. Summary statistics of the performance measures on different MS subgroups

(Cohort with minimum 6 visits). ROC-AUC, AUC-PR, Brier Score and ECE of all models on

the different MS course subgroups (averages ± standard deviations). Primary Progressive (PP),

Relapsing Remitting (RR) and Secondary Progressive are considered (SP). Cohort of patients

with a least 6 visits with EDSS in the last 3.25 years.

(PDF)

S6 Table. Summary statistics of the performance measures on different severity subgroups

(Cohort with minimum 3 visits). ROC-AUC, AUC-PR, Brier Score and ECE by severity sub-

group (averages ± standard deviations). Low severity patients are defined as the ones with

EDSS� 5.5 at baseline, while high severity patients are defined as having EDSS > 5.5 at base-

line. Cohort of patients with a least 3 visits with EDSS in the last 3.25 years.

(PDF)
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S7 Table. Summary statistics of the performance measures on different severity subgroups

(Cohort with minimum 6 visits). ROC-AUC, AUC-PR, Brier Score and ECE by severity sub-

group (averages ± standard deviations). Low severity patients are defined as the ones with

EDSS� 5.5 at baseline, while high severity patients are defined as having EDSS > 5.5 at base-

line. Cohort of patients with a least 6 visits with EDSS in the last 3.25 years.

(PDF)

S8 Table. Features importance for different performance metrics. Features are ranked by

order of importance for the Dynamic Model. Feature importance is assessed by the average

difference in performance when the specific feature is shuffled. Averages ± standard deviations

are reported.

(PDF)

S9 Table. Hyperparameters table for the temporal attention model. List of hyperparameters

used for training the models.

(PDF)

S10 Table. Hyperparameters table for the multi-layer perceptron model. List of hyperpara-

meters used for training the models.

(PDF)

S11 Table. Hyperparameters table for the recurrent neural network model. List of hyper-

parameters used for training the models.

(PDF)

S12 Table. Hyperparameters table for the dynamic MTP model. List of hyperparameters

used for training the models.

(PDF)

S13 Table. Hyperparameters table for the factorization machines model. List of hyperpara-

meters used for training the models.

(PDF)

S14 Table. Hyperparameters table for the logistic regression model. List of hyperparameters

used for training the models.

(PDF)

S1 Text. Models description. Description of the Bayesian neural networks, DeepMTP, and

Factorization Machines models.

(PDF)
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