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Abstract—Predicting the disability progression in multiple scle-
rosis remains a significant challenge. Statistical features extracted
from evoked potential signals are often discussed in literature
as interesting biomarkers, yet their practical adoption remains
limited due to their low effectiveness. Conversely, the use of deep
neural network feature encoders, which allow for extracting more
expressive biomarkers, is hindered by the limited availability
of data. This study proposes a novel method of enhancing
statistically extracted features by aligning hospital visits to embed
the progression of the disease within the features. The results
demonstrate a significant improvement in predicting disability
progression using the statistically extracted features. Insight is
provided through a study of correlation and importance of the
enhanced features.

Index Terms—Feature extraction, Representation learning,
Predictive modeling, Multiple sclerosis

I. INTRODUCTION

Deep neural network (DNN) feature encoders capture com-
plex relationships within raw data signals by directly optimiz-
ing features to enhance task performance. However, complex
DNNs require large volumes of data and substantial com-
putational resources. For data sets with a limited number
of samples, DNNs are prone to overfitting, compromising
generalization. In such cases, computing statistical features
that capture information like the morphology, statistical prop-
erties, and dynamic behavior from a signal is often preferable.
Additionally, while DNN-learned features can discern intricate
patterns, statistical features are more easily interpreted.

Healthcare data sets are rarely made publicly available
due to the high value associated with expert annotations and
privacy considerations. This results in a limited number of
public data sets, often with only a small number of patients.
Consequently, research and development of DNN feature en-
coders are restricted for such data, making the use of statistical
feature extractors prevalent. This is also evident in research on
monitoring the progression of Multiple Sclerosis (MS).

Various biomarkers have been documented in literature to
monitor the individual progression of MS in patients. These
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include, but are not limited to, features derived from magnetic
resonance imaging (MRI) scans [1] and features from evoked
potentials (EPs) time series [2]. Despite extensive research,
the practical adoption of these biomarkers remains limited
due to their low effectiveness [3]. This study investigates
whether statistically extracted features, more specifically EP
biomarkers, can be optimized to enhance their utility in
tracking disability progression. To this end, the potential of
the Structuring Whitened Embeddings (SWE) approach [4]
for statistical feature enhancement is explored.

II. BACKGROUND

A. EP biomarkers for MS progression

MS is a chronic autoimmune disease of the central nervous
system, affecting millions of people worldwide. With no
curative therapies available, treatment aims to prevent episodic
inflammation and disability, supported by the understanding
and monitoring of the disability progression in patients [5].
Patient disability can be monitored using EPs, measuring con-
duction of nerve pathways. By stimulating specific nerves and
recording activity elsewhere, EPs reveal lesions via decreased
conduction. While various types of EPs have been studied
as MS biomarkers, this study focuses on motor EPs (MEP)
[6]. MEPs relevant as biomarkers for MS are recorded in the
abductor pollicis brevis (APB) muscles when stimulated in the
hand areas of the motor cortex, and in the abductor hallucis
(AH) muscles when stimulated in the leg areas of the motor
cortex (Fig. 1) [7].

B. Structuring Whitened Embeddings

This study explores the use of Structuring Whitened Embed-
dings (SWE) [4] to enhance statistically extracted features. The
SWE approach constructs inter-sample relations by aligning
samples along an auxiliary relational variable. For MS disabil-
ity progression, visits of a patient can be aligned using the time
elapsed since the patient’s first visit. This alignment enables
capturing the evolution of the patient over time, encapsulating
valuable information about the disability progression.
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Fig. 1: Multiple four-signal MEP recordings are available
per patient as MS biomarkers. Two channels are recorded in
the abductor pollicis brevis (APB) muscles, and two in the
abductor hallucis (AH) muscles.

The employed SWE approach was previously introduced
to fit a DNN feature encoder for extracting features from
raw ECG time-series in a self-supervised manner. Proportions
among the relations set up along the auxiliary variable are
mimicked in a whitened embedding, thereby constraining fea-
tures to evolve smoothly between adjacent samples, effectively
capturing continuity along the relational variable [4].

III. METHODOLOGY

Four sets of enhanced features are obtained by transforming
features statistically derived from the MEP [8]. Weights are
fitted using SWE by structuring the inputs in a whitened 6-
dimensional projection. Dropout is utilized for regularization.
A graphical overview of the architectures for the discussed
approaches is given in Fig. 2.

(a) Element-wise addition. The first approach explores
feature improvement through linear transformation. Learned
values, implemented using a Dense layer with neuron count
matching the number of input features, are added element-wise
to the original features.

(b) Element-wise multiplication. The second approach ap-
plies element-wise multiplication between the input features
and the Dense layer’s neurons. A Sigmoid activation reduces
the weight of less important features.

(c) Element-wise addition followed by element-wise mul-
tiplication. The two preceding methods are combined for a
“best-of-both-worlds” solution. Scaling renders the transfor-
mation non-linear.

(d) Dense layer features. Given the limited amount of
samples, the raw MEP signals are too complex to fit a DNN
feature extractor. However, by employing a single fully con-
nected Dense layer with ReLU-activation, statistical features
can be used as input for computing features optimized for
progression. While previous approaches transform individual
features, this technique aggregates information into a new set
of features, essentially mapping patterns into a new space.
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(a) Element-wise addition.
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(b) Element-wise multiplication.
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(c) E.-W. addition and multiplication.
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(d) Dense layer features.

Fig. 2: Overview of the architectures used for the evaluated
approaches that transform the original statistical features (x)
into improved features (x′). The SWE module used for training
consists of a projection (h) and a whitening (w) layer.

IV. EXPERIMENTAL SETTING

After the feature transformation networks are fitted through
SWE, the quality of the feature sets is assessed by predicting
MS disability progression after two years, quantified as a
binary problem. This study uses the standard definition of
disability progression as defined by Kalincik et al. [9].

The data set “Motor Evoked Potentials for Multiple Scle-
rosis: A Multiyear Follow-up Dataset” [10] is utilized. From
this data, 380 patients undergoing treatment are considered,
totaling 1969 individual records. 85 individuals have at least
one record indicating MS progression. Each record consists
of 4 MEP signals. Statistical features from each signal are
extracted using HCTSA [8], [11], of which the top-ranked
features relevant to the MS disability progression as reported
by Yperman et al. are considered [7]. Additionally, latency and
the peak-to-peak amplitude are considered for every signal, as
well as the time elapsed since the patient’s first visit, resulting
in a total of 17 features. The inclusion of this last feature
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allows for fair comparison between a model’s baseline and
the SWE improved feature sets, as all now share the same
information. Clinical meta features are excluded to analyze
the isolated impact on the statistically extracted features.

Feature optimization by SWE aligns recurring patients’
visits, using the time since a patient’s first visit as the auxiliary
relational variable to establish inter-sample relations. At least
three patient visits are required to build up relational pro-
portions, limiting the number of patients available for feature
optimization to 265. For each patient, any combination of three
chronological visits is considered as an input.

Each set of improved features is evaluated both as a re-
placement for, and in addition to, the original feature set. The
impact is assessed on the performance of predicting disability
progression, using Logistic Regression as a linear model and
Random Forest as a nonlinear one. The performances obtained
using the enhanced feature sets are benchmarked against the
selected model’s performance on the original feature set,
referred to as the baseline.

V. RESULTS & DISCUSSION

Results for the average Area Under the Curve (AUC) of the
Receiver-Operating Characteristic (ROC) with 95% confidence
intervals are given in Fig. 3. Scores are obtained through
20 repetitions of 5-fold cross validations, totaling 100 mea-
surements, with hyperparameter optimization per fold. Normal
distribution of the results is determined by the Shapiro-Wilk
test. Statistical significance (p < 0.05) relative to the baseline
is calculated using the paired T-Test if the data is normally
distributed, the Wilcoxon signed-rank test is used otherwise.

A. Logistic Regression

Fig. 3a presents the results for the Logistic Regression
model around the baseline score of (µ = 0.692, σ = 0.055).
Replacement of the original features does not show any signif-
icant difference. Concatenating feature sets shows significant
improvement for approaches (c) and (d). Concatenating the
non-linearly transformed features to the original feature set
allows the model to benefit from both linear relationships in
the original set and from information added after non-linear
mapping. When replacing the original features, performance
is reduced, as the linear model struggles to fully leverage the
introduced non-linear relationships.

B. Random Forest

Results for the non-linear Random Forest model are plotted
in Fig. 3b. While baseline performance (µ = 0.665, σ =
0.059) is not on-par with the Logistic Regression, the Random
Forest can be used to study feature importance.

For replacement of the original feature set, significant
improvement in means is obtained by approaches (a), (b),
and their combination (c). The improvement after linear
transformation (a) indicates that the base features can be made
more informative for the model to split on. The element-
wise multiplication (b) demonstrates that the Random Forest
benefits from added regularization following from feature
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(b) Results for the Random Forest model.

Fig. 3: Experimental AUC-ROC scores (with 95% confidence
intervals) of the improved feature sets, both for replacement
of and concatenation with the original feature set. Scores
are aligned around the model’s baseline performance on the
original feature set (horizontal line indicating mean score,
shaded box indicating 95% confidence interval) to highlight
model-specific performance gains. Scaling is consistent across
the plots. Statistical significance is denoted by an asterisk (∗).

weighing. Given significant improvement for both methods,
it is unsurprising that the best performance for the Random
Forest model is achieved using the combination of element-
wise addition and multiplication (c). Although significance can
also be noted when combining feature sets, the performance
of replacing the original set is not matched. The performance
drop is likely due to the information being shared over
both sets of features, as Random Forests can be sensitive to
redundant features.

One might be surprised to see the performance disparity
between approaches (c) and (d), given their shared operational
basis. The fully connected approach uniformly transforms all
inputs through shared weights, aggregating information into
a new feature set. Conversely, the element-wise addition and
multiplication approach tailors transformations to each feature
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individually. These individual adjustments are particularly
beneficial for random forest models, which rely heavily on
the quality and relevance of individual input features.

C. Feature Importance

Analyzing the feature importance as set by the Random
Forest reveals that the baseline model, fitted to the original
features, assigns the most value to the latency, as well as
to the peak-to-peak amplitudes (up to 0.080). This aligns
with literature, where both are recognized as important MS
biomarkers. All other statistical features fall in the range
of 0.047 till 0.057. Upon replacement by SWE-transformed
features, the importance distribution becomes more uniform.
All statistical features, including latency and peak-to-peak
amplitudes, now exhibit feature importance values between
0.055 and 0.061.

The importance assigned to the features of the baseline
is heavily skewed towards a select few, leading to an over-
reliance that compromises generalization. The use of SWE for
feature transformation enables the model to recognize a wider
range of features as useful, introducing improved robustness.

D. Feature Correlation

Excluding self-correlations, the original feature set has
correlation values ranging from 0.04 to 0.77, with correlations
to the time since the first visit ranking the lowest. After
transformation by approaches (a) and (c), feature correlations
become more averaged, narrowing the range to [0.25, 0.58] and
[0.23, 0.52] respectively. Notably, the highest correlations are
all with the ‘time since first visit’-feature, indicating successful
embedding of temporal evolution, as well as decorrelation of
the other features. Similarly, for the Dense layer features of
(d), all correlations between learned features are minimal (in
the range of [0.27, 0.37]), while correlations with the feature
‘time since first visit’ rank highly ([0.48, 0.58]).

The original statistical features used in the baseline exhibit
high correlation, leading to multicollinearity that destabilizes
the Random Forest model. Following SWE-fitted transfor-
mations, feature correlation decreases. While this balance
mitigates issues related to multicollinearity for the Random
Forest, this likely also harms the predictive power of the
Logistic Regression model. Nonetheless, with the temporal
evolution being embedded, the features become more suited
for the prediction setting of disability progression.

VI. CONCLUSION

This research explored various statistical feature enhance-
ment methods using SWE, each with distinct strengths and
potential applications, and with suitability depending on the
objective and the machine learning model used. This study
assessed improvement in predicting MS disability progression.
Feature sets were evaluated using Logistic Regression as a
linear model, and Random Forest as a non-linear one.

It was observed that mapping statistically extracted features
to a new space through a Dense layer using SWE can capture
complex data patterns without the overfitting issues typically

associated with DNN-feature extraction. Including these trans-
formed features in the Logistic Regression model significantly
improved its baseline performance. Similar improvement was
observed in the performance of the Random Forest model after
individual feature transformations.

An analysis of feature importance and correlation provided
valuable insights. The improved performance of the Random
Forest model can be attributed to better generalization with
SWE-improved features, for which importances are more
uniformly assigned. The transformed features also exhibit
a balanced correlation structure, reducing multicollinearity
issues for this model. Conversely, for the linear Logistic
Regression model, the lower correlation of the individually
transformed features leads to less predictive power. While the
correlation between different statistical features was reduced,
the correlation with time, the relational variable employed for
SWE, was enhanced, signifying an optimization of the features
for predictive settings.

This research provided valuable insights into enhancing
biomarkers for predicting disability progression in MS. Further
studies can extend the application to other data, potentially
exploring its performance on more extensive feature sets.
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