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Abstract—Objective: To develop a novel method for im-
proved screening of sleep apnea in home environments,
focusing on reliable estimation of the Apnea-Hypopnea In-
dex (AHI) without the need for highly precise event local-
ization. Methods: RSN-Count is introduced, a technique
leveraging Spiking Neural Networks to directly count ap-
neic events in recorded signals. This approach aims to
reduce dependence on the exact time-based pinpointing
of events, a potential source of variability in conventional
analysis. Results: RSN-Count demonstrates a superior abil-
ity to quantify apneic events (AHI MAE 6.17 ± 2.21) com-
pared to established methods (AHI MAE 8.52 ± 3.20) on a
dataset of whole-night audio and SpO2 recordings (N = 33).
This is particularly valuable for accurate AHI estimation,
even in the absence of highly precise event localization.
Conclusion: RSN-Count offers a promising improvement
in sleep apnea screening within home settings. Its focus
on event quantification enhances AHI estimation accuracy.
Significance: This method addresses limitations in current
sleep apnea diagnostics, potentially increasing screening
accuracy and accessibility while reducing dependence on
costly and complex polysomnography.
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I. INTRODUCTION

S LEEP apnea affects 25–50% of the adult population, par-
ticularly elderly and obese individuals, and stands as one

of the most common sleep disorders [1]. However, about 80%
of patients remain undiagnosed [2]. The gold standard for sleep
apnea diagnosis is a polysomnography (PSG) conducted in a
sleep laboratory. During the night, PSG measures multiple phys-
iological signals pertaining to respiration, brain activity, sleep
stages, heart rate, oxygen saturation and others. These signals
are analysed and annotated by trained sleep specialists according
to the American Academy of Sleep Medicine (AASM) guide-
lines [3]. This leads to the determination of the Apnea-Hypopnea
Index (AHI), representing the number of apneas and hypopneas
per hour of sleep. Depending on the outcome, patients are
categorized as normal (AHI < 5), having mild sleep apnea (5 ≤
AHI < 15), experiencing moderate sleep apnea (15 ≤ AHI <
30), or facing severe sleep apnea (AHI ≥ 30) [3]. Neverthe-
less, PSG has several limitations, including its high cost and
complexity, patient discomfort, long waiting lists, interference
with natural sleep patterns, and its reliance on a single night
recording. Therefore, portable devices for home sleep apnea
monitoring are being developed. Such devices measure a limited
number of respiratory-related signals, such as respiratory flow,
thoracic effort, oxygen saturation (SpO2), bio-impedance or
audio signals [4], [5].

Despite the availability of guidelines, the annotation of the
signals involves some degree of subjectivity and can lead to inter-
rater and intra-rater variability as shown by recent studies [6].
This can hamper the performance of existing techniques [7], [8],
[9], [10], [11], [12], [13], [14], [15], [16], [17], [18] that detect
apneic events using deep learning models by sliding a window
over the raw filtered signals and extracting relevant features.
Especially in cases where the pinpointing of apneic events is
approximate, there can be a mismatch between the considered
windows and their correct annotation. Furthermore, annotations
can be ill-defined when windows contain only a part of the apneic
event, or multiple events.

This paper aims to address those problems by taking ad-
vantage of the fact that, in clinical practice, the diagnosis is
mostly based on the AHI without requiring the precise location
of events. To this end, a novel RSN-Count algorithm is proposed,
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as a method that leverages Spiking Neural Networks to count
apneic events in the recorded signals, treating the task as a true
counting task where the events are treated as singular units in
time. This is in contrast to previous methods, that either treat it as
a regression problem, or otherwise make use of time thresholds,
where there needs to be an uninterrupted positive prediction
of several seconds. Instead, the proposed RSN-Count aims to
estimate the AHI directly by counting the number of apneic
events, while discarding information about the precise start and
end times of those events. It is successfully applied to determine
the AHI of patients, based on a home sleep apnea test that records
acoustic signals with a smartphone, as well as oxygen saturation.
It is noted that the algorithmic approach is generic and could be
applied to other types of signals as well.

The structure of the paper is organized as follows. After
this Section I, corresponding to the introduction, an overview
is provided of related work on sleep apnea detection in
Section II. Section III introduces some preliminary concepts and
the methodology of the novel RSN-Count algorithm. Section IV
describes the available data and experimental set-up. This is
followed by numerical results and a performance validation in
Section V. Finally, the paper provides a discussion in Section VI
and concluding remarks in Section VII.

II. RELATED WORK

In literature, several advancements are reported in predict-
ing the AHI from PSG recorded signals, hereby leveraging a
variety of machine learning techniques. Classical approaches
for sleep apnea detection are based on a sliding window ap-
proach where human-engineered features are extracted from
physiological signals, followed by the application of classical
algorithms such as k-nearest neighbor, Hidden Markov models,
support vector machine, fuzzy logic and neural networks [19].
More recently, the use of deep learning algorithms, such as 1D
or 2D Convolutional Neural Networks (CNN’s), bi-directional
Long Short-Term Memory (BiLSTM) networks, Gated Recur-
rent Units (GRU), self-attention mechanisms and transformer
networks has emerged as a promising approach [20], [21], [22].
A systematic review of the latest developments is reported
in [23]. With the uprise of wearable devices, various modalities
can be recorded and analysed, such as nasal or oral airflow, elec-
trocardiogram (ECG), ECG-derived respiration, bio-impedance,
pulse oximetry, tracheal sound, accelerometer data, and various
respiration signals. Such measurements can be obtained from a
chest band, patch, pressure sensor, thermal sensor or other types
of devices.

Nowadays, the analysis of acoustic breathing and snoring is
gaining attention for sleep apnea monitoring as it only requires a
low-cost sensor (microphone) and can be used to detect apneas
and hypopneas as an absence or reduction in sound. In [4], a
rule-based algorithm was presented, based on entropy analysis
of acoustic signals recorded with a smartphone for home sleep
apnea diagnosis. When traditional machine learning methods are
applied to audio signals, a random forest approach yields a Mean
Absolute Error (MAE) on the AHI of 9.64 using global audio
features [9]. In [15], OSA harnessess deep learning methods,

such as a CNN, to achieve an improved MAE of 3 events per
hour. In other papers, deep neural networks are combined with
Mel-frequency cepstral coefficients (MFCC) to classify normal
snoring, apneic snoring and not snoring by making use of a
windowed approach [13]. Furthermore, it was shown in [24]
that the integration of physiological signals, such as respiratory
effort, can potentially enhance the AHI prediction. Addition-
ally, ensemble methods, particularly gradient boosted models,
have been highlighted for their promise in predicting OSA
severity [25].

In this work, a novel Recursive Spiking Network is proposed
that changes the overall objective to counting events, rather than
detecting individual apneic events. As such, the algorithm does
not require a precise localization of individual apneic events
during annotation. This is an important advantage, as there
can be subjective elements in the interpretation and scoring of
sleep data, even though the AASM guidelines themselves are
objectively defined [3]. By detecting entire events, rather than
focusing solely on the fact an event occurred at or near a specific
time step, the RSN-Count algorithm is able to estimate the AHI
more accurately.

III. METHODS

This section gradually introduces RSN-Count, a technique
that is not restricted to specific signal modalities. In this work,
however, audio and SpO2 are considered in particular. A trans-
formation on the audio and SpO2 signals is proposed in Sec-
tion III-A using standard deep learning techniques, resulting in
a fused time series. Then, an introduction to Spiking Neural
Networks (SNN) is given in Section III-B, followed by the
novel RSN-Count in Section III-C. The complete pipeline of
an RSN-Count based model is shown in Fig. 1.

A. CNN-Based Feature Extraction

Prior to the proposed RSN-Count stage, a feature extraction
step is applied on the input audio and SpO2 data. First the raw
audio data is transformed to a spectrogram making use of the
Short-Time Fourier Transform (STFT). Then, a CNN is applied
as it can extract meaningful features from audio spectrograms.
It is composed of four sequential blocks, each comprising the
following layers:

1) Convolutional Layer: Each block contains a convolu-
tional layer with 100 filters. Each filter has a kernel size of
3, and Rectified Linear Unit (ReLU) activation is applied
to the output of this layer.

2) MaxPooling Layer: Following the convolutional layer
in each block is a max-pooling layer, responsible for
downsampling the feature maps.

3) Dropout Layer: To prevent overfitting, a dropout layer
with a probability of p = 0.4 is inserted after the max-
pooling step to improve generalizability.

The output from the final block of the CNN is concatenated
with the input SpO2 maxdrop time series data, resulting in a
new time series that contains a compressed, latent version of the
audio. This combined data is then fed into a stacked BiLSTM, all
with 50 hidden units, allowing the network to leverage both the
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Fig. 1. Conceptual model of RSN-Count making use of a predeter-
mined spike history h. Note that the BiLSTM block replaces the func-
tion gθ from (3), which by itself is also recurrent. Hence, the output of
this block is a time series.

learned features from the audio spectrograms and the temporal
dynamics of the SpO2 data. The output of this stacked BiLSTM
is then used as the base latent time series used by RSN-Count.

B. Spiking Neural Networks

Before introducing RSN-Count, a basic foundation of Spiking
Neural Networks (SNNs) [26], [27] is given. SNNs are inspired
by the way biological neurons communicate and process in-
formation. In the human brain, neurons do not continuously
send information. Instead, they transmit information sporadi-
cally through electrical impulses, known as spikes. When the
electrical potential across a neuron’s cell membrane reaches
a specific threshold, the neuron fires this spike. This discrete,
event-driven communication stands in contrast to traditional
artificial neural networks, which rely on continuous values.
SNNs attempt to mimic this biological spiking behavior, aiming
to capture the efficiency and temporal dynamics seen in natural
neural systems. These spiking neural networks are particularly
well-suited for modeling temporal information and have been
used in various applications, including neuromorphic computing
and time-series analysis. The key advantage for sleep apnea
detection is that the spikes can be interpreted as discrete events,
whereas an LSTM or other techniques for modeling sequential
data need additional post-processing and thresholding to dis-
cretize an output time series into events.

1) Leaky Integrate and Fire (LIF) Neuron: The Leaky Inte-
grate and Fire Neuron is a core concept in SNNs. It is a simplified
version of the biological process that occurs in real neurons.
Unlike traditional artificial neurons that output a continuous

value, the Leaky Integrate and Fire Neuron models the spiking
behavior of biological neurons. It integrates incoming signals
until a threshold is reached, at which point it fires a spike and
resets its internal state, also known as the membrane potential.
The leaky aspect comes into play because the neuron also has a
mechanism to gradually lose or leak some of its stored energy
over time, mimicking the decay process in biological neurons.
This allows SNNs to capture temporal dynamics and makes
them particularly useful for time series data and tasks requiring
temporal context.

2) Membrane Potential: The membrane potential ut of a
LIF neuron is defined as

ut = βut−1 + xt, (1)

and is determined by its previous value ut−1 and an input
termxt, whereu0 = 0. A decay parameter β ∈ [0, 1] determines
how fast the membrane potential decays over time, given an
external input xt ∈ R to the neuron. If the membrane poten-
tial ut surpasses a defined threshold κ (often κ = 1), the neuron
fires or “spikes” and the membrane potential is reset to zero.
Depending on the application or task at hand, the spikes can
be interpreted in different ways. In this paper, the timing of the
spikes reflects critical events in the signal or temporal changes
in the system being modeled. This threshold crossing is often
described using the Heaviside step function Θ. The spike train,
which represents the discrete spike emissions over time, can be
defined as LIF = {st}, ∀t with

st = Θ(ut − κ). (2)

3) Solving the Dead Neuron Problem: The use of the
heaviside function implies that the LIF neuron can not be used
with back-propagation, which is the primary mechanism for
training neural networks. Its derivative is the Dirac δ distribution,
which is 0 everywhere except at 0, where it tends to infinity, caus-
ing the dead neuron problem. This occurs when certain neurons
in a neural network become inactive, outputting constant values
and ceasing to update during training, thereby reducing the
model’s learning capacity. Instead, the gradient of the arctangent
function is used as a surrogate st ≈ s̃t =

1
π arctan(πut) in the

backward pass

∂s̃t
∂ut
← 1

π

1

(1 + (πut)2)
,

where the left arrow denotes substitution. The forward pass, as
described in (2), remains unchanged.

C. RSN-Count Algorithm

The novel Recursive Spiking Network for Counting (RSN-
Count) technique leverages the recursive application of the
Leaky Integrate and Fire (LIF) Neuron used in Spiking Neural
Networks (SNNs) to assess apnea severity of a patient.

The input of RSN-count are recorded signals, e.g. based on a
PSG or a wearable, whereas the output is the estimated AHI. The
method is applied in a windowed manner, meaning segments x
of a predefined size are extracted from the input signals. Based on
a recursive approach, a binary spike history vectorh is calculated
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that contains a single spike for every detected apneic event in
the window. By counting the occurrence of spikes over time for
each window and subsequently dividing by the overlap in the
sliding window, the patient’s AHI is estimated.

Note that this network is not considered to be an SNN in the
purest sense, but rather a hybrid approach. SNNs typically make
use of spikes throughout the architecture, including the inputs,
whereas RSN-Count only makes use of the LIF neuron to mark
the location of a discrete apneic event, occurring approximately
around the spike. This makes it possible to design a loss function
that shifts the time of the spike closer to the time of an actual
event. Hence, the methodology of RSN-Count revolves around
the implementation of a Deep Neural Network with a LIF head,
where its primary function is to identify the first event in a given
window, given the previously detected events. This paradigm
characterizes the approach, where h is constructed through
successive predictions obtained from previous recursive steps
of RSN-Count.

Note that the event spikes emitted by RSN-Count are not
exact, and indicate the presence of an event in its vicinity, rather
than its exact location and duration. This makes it suitable in
situations where the number of events in a given window is
more important than their precise time localization.

1) Model Architecture: The architecture of the algorithm is
visualized in Fig. 1. First, the input segments of the recorded
signals are passed through the aforementioned feature extractor
from Section III-A. The resulting time series data x, together
with a spike history h that is initialized with zeros, are then fed
into a Bidirectional Long Short-Term Memory layer, denoted
as function gθ(x,h). Both x and h are of the same size.
The output z of this BiLSTM layer is then multiplied with
a mask m = μ(h). Initially, the mask consists of only ones,
meaning no change is applied to output z. However, in each
recursive step, it is constructed by zeroing a ones vector until
the time of the last event τω(h) in the spike history h.

μ(h) = w, where wi =

{
0, if i < τω(h)

1, otherwise
.

τω(h) = max ({t : ht = 1} ∪ {0}) .

The masked signal z 	m, calculated as a Hadamard product,
is then fed into the LIF neuron (1) that potentially emits a spike.
If it does, the spike is recorded in h and the process is recur-
sively repeated until either no spike is emitted, or τω(h) = W ,
where W represents the window size.

Hence, RSN-count starts from h(0) = 0 and recursively
solves (3) in consecutive steps, n, until h(n+1) = h(n).

m(n) = μ
(
h(n)

)
, z(n) = gθ

(
x,h(n)

)
RSN(x,h(n)) = h(n+1) = h(n) + ιn

(
LIF

(
m(n) 	 z(n)

))
.

(3)

Algorithm 1: RSN-Count at Inference Time.
1: Given function RSN from (3)
2: h(0) ← 01×lw
3: h(1) ← RSN(x;h(0))
4: i← 1
5: while h(i) 
= h(i−1) do
6: h(i+1) ← RSN(x;h(i))
7: i← i+ 1
8: end while
9: return h(i)

In (3), an auxiliary function ιn(x) is used that filters the LIF to
only contain the first n occurrences of 2 as follows

ιn(v) = w, where wi =

{
vi, if

∑i
j=1 vj ≤ n

0, otherwise
.

This final history vector h(n) then becomes the resulting output
of the network, indicating approximate locations of detected
events within this window. Algorithm 1 provides a description
on how apneic events are detected by RSN-Count through a
recursive application of (3) and consecutive addition of predicted
spikes to the spike history h.

2) AHI Estimation: By sliding the window over an entire
night recording and applying this procedure to the subsequent
segments, the AHI can be determined by counting the number
of detected apneic events over time and calculating the average
number of events over each hour of sleep. The number of events
is determined as follows: given a window stride length l and
a window size W , it is anticipated that each event will be
observedW/l times within any given time period. Consequently,
the spikes are tallied to obtain the count estimate ĉ = Ntot

W/l ,
where Ntot denotes the total number of observed apneic events.
It is worth noting that at the edges of the predictions, the accuracy
of detected events tends to decrease. To enhance the counting
accuracy when analyzing events over an extended time period
using a sliding window approach, only the predictions within
a calibrated sub-window [tinit, tend] are considered. Note that
the optimal configuration of these hyperparameters is identified
from an evaluation of the model on the validation set.

3) Model Training: The model training procedure is ex-
plained in Algorithm 2. For each input segmentx, a correspond-
ing binary vector y is defined, containing N target spikes that
are located at the mid-point of each apneic event in the window,
as determined from the ground-truth annotations. First, the
predicted spikes ŷi = RSN(x; ιi(y)) are sequentially calculated
by the model for every i ≤ N + 1, by making use of the target
spikesy. The last prediction at iterationN + 1 is used as an “off”
event, where no prediction signals the lack of any further events.
Subsequently, the loss functionL(ŷ,y,u(N+1)), whereu(N+1)

is the last membrane potential from RSN-Count is computed.
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Algorithm 2: RSN-Count Training With Teacher Forcing.
1: Given function RSN from (3), input x, target spikes y
2: for k ∈ [1 . . . N + 1] do
3: h′ ← ιk−1(y)
4: ŷk ← RSN(x;h′)
5: end for
6: Retrieve last membrane potential u(N+1)

7: Calculate ∇θL(ŷ,y,u(N+1))

4) Loss Function: The loss functionL(ŷ,y,u(N+1)) com-
prises of three terms, and is defined as follows.

L(ŷ,y,u) =
N∑
i=1

(
t̂yi
− tyi

α

)2

︸ ︷︷ ︸
target events

+

(
tŷN+1

− α

α

)2

+

membrane penalty︷ ︸︸ ︷
λ

α− τω(u)

α∑
i=τω(u)

|ui|
︸ ︷︷ ︸

no event

.

The first term computes the Mean Squared Error (MSE) between
the predicted spike times tŷi

and the actual spike times tyi
, nor-

malized by the value α = tend + 1. The second term computes
the MSE between the last predicted spike time and α. If no
spike is predicted, this term vanishes because tŷN+1

= α. The
last term is a penalty term that steers the membrane potential of
the prediction after the last spike yN towards 0, where λ = 0.01
is a regularization parameter. Without this penalty term, spikes
may be incorrectly predicted at the end of the window, even
though no event is present. For example, if tŷN+1

= α− 1, the
“no event” term would become α−2, resulting in a negligible
contribution to the loss function.

Note that the derivative of each spike time with respect to
the spike ∂tŷ/∂s is non-differentiable. Therefore, the gradient
of each predicted spike time tŷ is set to a sign estimator of -1.
A positive gradient ∂s/∂u at the predicted spike when using
gradient descent will increase the value of membrane potentialu,
therefore causing an earlier firing time.

By utilizing MSE in this event-based context, only an approxi-
mate event location becomes crucial. If a cross-entropy loss were
employed instead, it would enforce a single precise location for
each event detection, potentially leading to overfitting. This sce-
nario is more likely when the timing of apneic event annotations
is noisy or imprecise, and represent approximations of the actual
underlying ground truth data.

IV. EXPERIMENTAL SETUP

A. Dataset Description

RSN-Count is applied to a sleep apnea dataset containing
overnight recordings of 33 patients (18 men, 15 women) with a
mean age of 55± 16 who were enrolled for an overnight sleep

test [4]. The data acqusition and analysis was performed by
the BIOSPIN group of Institute for Bioengineering of Catalo-
nia (IBEC) and received approval from the Ethics Committee of
Hospital Clínic de Barcelona (protocol code HCB/2017/0106),
and informed consent was obtained from all participants. Among
the participants, 20 underwent in-lab polysomnography (PSG),
while 13 underwent a home sleep apnea test with ResMed
ApneaLink AirTM [28].

The PSG recordings consisted of various channels, including
respiratory signals (nasal cannula, thermistor, and thoracic and
abdominal effort) sampled at a rate of 32 Hz, single-lead elec-
trocardiogram sampled at 256 Hz, and SpO2 sampled at 1 Hz.
On the other hand, the ApneaLink measurements included respi-
ratory flow through a nasal cannula sampled at 100 Hz, thoracic
movement sampled at 10 Hz, and SpO2 sampled at 1 Hz. Simul-
taneously, overnight audio recordings were acquired at a rate
of 48 kHz using the built-in microphone of a smartphone (Sam-
sung Galaxy S5) placed over the subjects’ thorax using an elastic
band. This configuration had been successfully tested in previous
studies [4], [11]. The mean recording length for each subject
was 6.4± 1.3 hours.

To ensure synchronization, timestamps were used to align
the data from the smartphone and the reference system (ei-
ther PSG or ApneaLink). Trained sleep specialists annotated
the data from the reference system, following the guidelines
of the American Academy of Sleep Medicine (AASM) [3].
Based on these annotations, 3 subjects were identified with a
normal Apnea-Hypopnea Index (AHI), 4 with mild AHI, 17
with moderate AHI, and 9 with severe AHI.

B. Data Preprocessing

The dataset is divided into a train, validation, and test set,
comprising 17, 8, and 8 patient recordings, respectively, and the
model results are evaluated using 4-fold cross validation.

Audio recordings from the smartphone’s microphone and
oxygen saturation SpO2 are the two modalities that will be
considered to determine the patient’s AHI using RSN-Count.

In a data-preprocessing step, a Short-Term Fourier Trans-
form (STFT) is applied to the audio signals with an FFT window
size of 512. Subsequently, each 60-second window is extracted
from the STFT and resized to 256× 960 using nearest neighbor
sampling. Additionally, a “maxdrop” SpO2 signal is defined at
each second t by computing the maximum drop in SpO2 within
the time range [t, t+ 45]. An example of a 60 s segment x,
obtained from the STFT spectogram and the SpO2 maxdrop
feature can be seen in Fig. 2.

The midpoints of the annotated apnea-hypopnea events, vis-
ible within each window, are used to define the corresponding
target spikes y that can be used to train RSN-Count.

V. RESULTS

A. Baseline Models

In order to assess the model performance of RSN-count, the
novel approach will be benchmarked against two state-of-the-art
deep learning for sleep apnea detection using audio recordings
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TABLE I
MODEL PERFORMANCE COMPARISON: AHI AND CORRELATION METRICS

Fig. 2. Example of a 60 s window from the dataset. The SpO2 max-
drop feature is shown in the lower half. Apnea/Hypopnea events are
marked in red.

and SpO2. The first technique is a CNN architecture that com-
prises 5 sequential blocks, as described in [29], whereas the
second technique is a CNN-BiLSTM architecture, similar to
other reported methods for sleep apnea detection [16], [17], [20],
[21]. A key difference is that the reference models are trained
by making use of the Cross-Entropy Loss, whereas RSN-Count
makes use of the loss provided in Section III-C4, based on the
distance of the predicted event and the center of the actual event.

For both the CNN and CNN-BiLSTM baseline, a similar strat-
egy for event detection is applied, following the approach used
by Kwon et al. [20]. This strategy involves counting one discrete
event of Apnea-Hypopnea (AH) if six consecutive windows with
a stride of 1 s in a night are classified as AH. In this work however,
we adhere to the AASM guidelines and accept only events longer
than 10 seconds as AH.

B. Performance Metrics

While RSN-Count is not geared towards predicting exact
locations and durations of apneic events, it is possible to evaluate
RSN-Count in a similar way by using commonly used metrics
for sleep apnea detection. Typical metrics are the area under
the ROC curve, average precision score, NPV, PPV, sensitivity,
specificity and accuracy. The average precision is similar to
the area under the precision-recall curve (AUCPR), but less
optimistic. The formal definition is as follows, with recall (sen-
sitivity) values r, and precision (PPV) values p:

AP =
∑
n

(rn − rn−1)pn.

Fig. 3. Optimal hyperparameters tinit and tend (red asterisk).

An often overlooked metric is the Intersection over
Union (IoU), a.k.a. Jaccard index, defined for two sets A and
B as:

J(A,B) =
|A ∩B|
|A ∪B| .

It is frequently used in semantic segmentation for computer
vision to score how well the predicted regions overlap with the
labels, which is more important when detecting AH events.

A calculation of the regions is achieved by post-processing
the spikes produced by RSN-Count. Each predicted spike ŷi is
represented as an unnormalized Gaussian f(t; tŷi

, σ), and they
are aggregated over subsequent windows by a summation

f(t; tŷi
, σ) = exp

(
− (t− tŷi

)2

2σ2

)
. (4)

The standard deviation σ is determined by optimizing the
area under the receiver operating characteristic curve (AUC
ROC) for the approximated scores on the validation set. Hyper-
parameter σ is optimized to 20.69. Fig. 7 shows the resulting,
unnormalized scores for a sample segment as an example.

C. AHI Assessment

The main goal of RSN-Count is the assess the AHI of patients
as accurately possible. While the complete window of predic-
tions could be used of RSN-Count, through testing it can be
observed that selecting a smaller window of the predictions (de-
fined by a tinit and tend) improves the counting performance.
Through a grid search, it is determined that optimal value of
hyperparameters is tinit = 5 and tend = 50, as shown in Fig. 3

Table I shows a comparison between different models when
evaluating the Apnea-Hypopnea Index (AHI) with a 4-fold
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Fig. 4. (a) CNN: AHI severity confusion matrix on every test set.
(b) CNN-BiLSTM: AHI severity confusion matrix on every test set.
(c) RSN-Count: AHI severity confusion matrix on every test set.

cross-validation split on the patients over all folds. It can be
seen that the MAE of RSN-Count is 6.17± 2.21, while that of
the base CNN-BiLSTM is 8.52± 3.20, showing superior perfor-
mance in a generalized setting as well. A similar observation can
be made when comparing the AHI RMSE between both models.
This demonstrates that RSN-Count significantly outperforms the
other state-of-the-art methods.

The evaluation based on the AASM guidelines [3] involves
the construction of a confusion matrix, shown in Fig. 4(c) for
all folds. It can be seen that there is slight confusion among

Fig. 5. Correlation between estimated AHI and true AHI for CNN,
CNN-BiLSTM and RSN-Count. The red regions denote erroneous clas-
sifications w.r.t. the AASM annotations [3]. (a) CNN predicted AHI vs.
true AHI. (a) CNN-BiLSTM predicted AHI vs. true AHI. (c) RSN-Count
predicted AHI vs. true AHI.

the higher severities, with one severe AHI patient identified as
normal. This outlier also persists in the CNN-BiLSTM model
and suggests an outlier in the dataset. The Pearson correla-
tion coefficient of 0.86± 0.12 and intraclass correlation (ICC)
of 0.87 within the 95% confidence interval of 0.75 to 0.93
further highlights the positive correlation between the predicted
AHI values and the actual AHI values obtained from the gold-
standard measurement. The linear correlation is shown for each
tested model in Fig. 5, with corresponding Bland-Altman plots in
Fig. 6. The Bland-Altman plots show some degree of bias of all
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Fig. 6. Bland-altman plots for each model. (a) CNN predicted AHI vs.
true AHI. (b) CNN-BiLSTM predicted AHI vs. true AHI. (c) RSN-Count
predicted AHI vs. true AHI.

Fig. 7. Unnormalized RSN-Count scores making use of the method
outlined in Section V-D.

three models, with the CNN-BiLSTM model having a negative
bias (underprediction) and the CNN model showing a slight
positive bias (overprediction), while RSN-Count shows virtually
no bias. Additionally, RSN-Count has the narrowest limits of
agreement, indicating more consistent predictions compared to
the CNN and CNN-BiLSTM models.

D. Event Classification

By making use of (4), RSN-Count can provide predictions
in line with those given by the state-of-the-art CNN and CNN-
BiLSTM models. The classification results for RSN-Count and
the reference methods are presented in Table II. Although event
classification is not the aim of RSN-Count, it is observed that
the method demonstrates competitive performance compared to
state-of-the-art methods. In comparing the performance of con-
volutional neural networks (CNN), CNN-BiLSTM, and RSN-
Count models, significant variations in classification metrics
are evident. The CNN-BiLSTM model outperforms the oth-
ers in terms of ROC AUC (0.87± 0.03) and Average Pre-
cision (0.71± 0.06), indicating its superior ability to distin-
guish between classes and its higher precision in classification.
The RSN-Count model demonstrates the highest Intersection
over Union (IoU) score (0.64± 0.07), suggesting better per-
formance in overlapping class instances. In secondary metrics,
the CNN-BiLSTM also shows the highest Negative Predic-
tive Value (NPV) (0.93± 0.01), while the RSN-Count model
leads in Positive Predictive Value (PPV) (0.73± 0.05), Sensi-
tivity (0.83± 0.07), and Accuracy (0.83± 0.07). These results
indicate that while CNN-BiLSTM has a balanced performance
across various metrics, RSN-Count may be preferred for appli-
cations requiring high sensitivity and accuracy. The traditional
CNN model, while outperformed by the others, still maintains
a consistent baseline across all evaluated metrics.

VI. DISCUSSION

RSN-Count differentiates itself from existing deep learning-
based sleep apnea detection methods by estimating the AHI
directly via treating apnea events as single units in time, rather
than a region with a precise begin and end time, as is the case
with previous proposed DL based methods. The main methods
of performing AHI estimation with deep learning are 1) direct
regression on the AHI [30], 2) classification on windows of time,
where the entire window is evaluated as containing an apnea
event or not [29], or 3) treating every second (or other timestep)
as a moment that needs to be classified as apnea or not [20],
[31]. They all have their own drawbacks:

1) Regression methods need to infer the task, as no prior
information about the events is given

2) Windowed classification methods suffer in cases when
there is overlap, or multiple apnea events occuring in a
single window

3) Per-second classification methods require an artificial
threshold, both in probability and time.

RSN-Count treats its targets as single events that need to be
predicted. Its novelty lies in the use of Spiking Neural Networks
and a novel loss function that focuses the predictive power of
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TABLE II
MODEL PERFORMANCE COMPARISON: CLASSIFICATION METRICS

deep learning models to output single spikes or events, close to
the center of the actual event. This is done by using an MSE
distance loss, rather than cross-entropy, which is the common
method of training deep learning classifiers. This property make
the approach more appealing in cases where annotation of
apneic events is imprecise, or where the exact start and end
times are not relevant. Although event annotations are based
on strict AASM guidelines, there can be situations where the
recorded signals are affected by noise or artifacts. Additionally,
due to additional signals not being present in the training data
used for this study (only audio and SpO2 for convenience of
the subject), there may be inherent uncertainty on the exact
location of the apnea event given this limited set of data sources.
Existing ML-based approaches often struggle to deal with this
uncertainty [32], leading to a loss of performance, whereas the
design of RSN-Count inherently addresses these challenges.

When comparing RSN-Count to other state-of-the-art Deep
Learning-based methods for sleep apnea detection such as CNNs
and CNN-BiLSTMs [16], [17], [20], [21], the novel approach
shows superior performance for AHI estimation when making
use of smartphone audio and SpO2. While the accuracies can
not directly be compared due to the differences in data, the
findings in this work are similar and exceed those from previous
studies making use of smartphone audio, such as [33], who
report an average offset of 0.23 (95% CI [−28.73, 29.18]),
similar to the performance of the CNN reported in this work,
with 0.97 (95% CI [−30.13, 32.07]). Comparing these results to
RSN-Count’s −0.02 (95% CI [−20.33, 20.29]), it is clear that
with a similar architecture and a novel loss function, superior
results can be obtained. The combination of sleep sounds and
SpO2 has also already been used with deep learning, with similar
results pertaining to classification metrics as in [34], where they
report accuracy, sensitivity and specificity of 0.84, 0.84 and
0.84 respectively (rounded to two significant digits), whereas
RSN-Count presents accuracy, sensitivity and specificity of 0.83,
0.83 and 0.83 respectively.

Unlike conventional methods that focus on pinpointing
events, RSN-Count’s counting-based learning scheme is more
flexible and can more accurately tackle the problem of AHI
estimation, while retaining similar “classical” classification per-
formance. The increase in IoU also indicates that RSN-Count
is more accurately aligned with the actual timestamps in which
apneas occur compared to CNN and CNN-BiLSTM.

One limitation of the study is the size of the data set. Due
to the unavailability of high quality audio recordings in public
datasets such as the Sleep Heart Health Study (SHHS) [35],
a small dataset is used (as in [4], [29]). However, there is a
lot of information present in the audio recordings due to the
heterogeneous data collection from sleep centers and at-home

recordings, resulting in approximately 211 hours of data. An
interesting future study would be to validate the generalisability
of the technique when tested on data sets from other sleep
centres.

Another limitation of the study is that acoustic signals cap-
tured using a smartphone can be sensitive to background noise
and environmental sounds that interfere with the detection of
sleep apnea. While this data was used to validate and demon-
strate the proposed methodology, its application is not nec-
essarily exclusive to audio recordings and SpO2 signals. As
mentioned earlier, sleep apnea detection can also be based on
other types of respiratory-related signals, such as respiratory
flow, thoracic effort, bio-impedance, and others. Although the
effectiveness of the novel method has not been exhaustively
explored on all types of signals, it is hypothesized — as future
work — that the conceptual model of RSN-Count (see Fig. 1) is
sufficiently general to accommodate further expansion to other
signal types as well.

VII. CONCLUSION

RSN-Count represents a paradigm shift in the development
of ML-based solutions for the screening of patients or sleep
apnea severity assessment by leveraging concepts from spik-
ing neural networks. Apneic events can be counted from an
overnight recording, rather than aiming to exactly pinpoint
individual apneic events on a time scale. The novel algorithm
is validated on recordings of acoustic signals and oxygen sat-
uration that were recorded with a smartphone, an approach
that is particularly suitable for use in a home environment.
The results confirm that RSN-Count leads to a more accurate
estimation of the AHI (MAE 6.17± 2.21) when compared to
baseline models reproduced in this work (MAE 8.52± 3.20
and 11.49± 1.76).
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