
Highlights

ECGencode: Compact and Computationally Efficient Deep Learning Feature Encoder for ECG signals⋆

Lennert Bontinck, Karel Fonteyn, Tom Dhaene, Dirk Deschrijver

• ECGencode, a deep learning feature encoder for 12-lead
ECG data, is introduced.

• FBCSP-inspired depthwise separable convolutions ensure
performance and efficiency.

• Novel spatial Gaussian noise regularisation improves gen-
eralisability.

• SOTA ECG classification with over ten-fold reduction in
parameters and FLOPs.

• Versatile, efficient and interpretable model architecture
for widespread adoption.

ECGencode: Compact and Computationally Efficient Deep Learning Feature Encoder for
ECG signals

Lennert Bontincka,∗, Karel Fonteyna, Tom Dhaenea, Dirk Deschrijvera

aIDLab, Ghent University - imec, Technologiepark-Zwijnaarde 126, Ghent, 9052, East-Flanders, Belgium

Abstract

The visual interpretation of electrocardiogram (ECG) data is driven by human pattern recognition and requires in-depth medical
knowledge. Although state-of-the-art deep learning models can automate and improve ECG feature extraction and analysis, they
face deployment challenges, particularly on medical edge devices, due to their extensive computational demands and large param-
eter counts. To address these limitations, this work introduces ECGencode, a novel deep learning feature encoder optimised for
ECG data. ECGencode is characterised by its intuitive, compact, and expert-inspired architecture, drawing from the Filter Bank
Common Spatial Patterns method traditionally used in EEG signal analysis. It leverages depthwise and separable convolutions to
provide state-of-the-art analysis performance at a fraction of the computational cost. Designed for intuitive model configuration
and providing a latent space that retains the structure of an ECG, ECGencode can be incorporated into a wide variety of ECG
analysis models. Furthermore, a novel spatial Gaussian noise regularisation technique is introduced, promoting the learning of
more generalisable features. ECGencode stands out for its reduced computational requirements, using only 3.79% of the trainable
parameters and 12.39% of the FLOPs compared to the benchmark model for normal sinus rhythm atrial fibrillation detection and
new-onset prediction. Furthermore, an LSTM-extended ECGencode model matches the performance of leading multi-label clas-
sification models with a tenfold reduction in parameters. These attributes position ECGencode as a highly efficient tool for ECG
analysis, with the potential to facilitate its adaptation in resource constrained cardiac diagnostics and monitoring settings.

Keywords: Electrocardiography, Deep learning, Feature Encoder, Computational Efficiency, Arrhythmia detection, Predictive
modelling,

1. Introduction

The electrocardiogram (ECG) is a fundamental diagnostic
tool in clinical practice, favoured for its cost-effectiveness, non-
invasive nature, and straightforward data acquisition process
(Faruk et al., 2021). A standard 12-lead ECG, providing a 10-
second recording at high temporal resolution, offers an intricate
temporal and spatial portrait of cardiac electrophysiology. This
diagnostic modality is integral for the early detection and man-
agement of cardiac anomalies, playing a vital role in the timely
initiation of therapeutic interventions.

However, the visual interpretation of ECGs is a demanding
task, requiring significant medical expertise and is inherently
limited by human pattern recognition capacity. These limita-
tions have motivated the development of automated ECG analy-
sis methods, with machine learning algorithms increasingly be-
coming the method of choice (Sau and Ng, 2023; Somani et al.,
2021; Mincholé et al., 2019; Petmezas et al., 2022; Gilon et al.,
2023). Owing to their data-driven approach, machine learning

⋆Funding: This work was supported by the Flemish Government via the AI
Research Program.
∗Corresponding author
Email addresses: lennert.bontinck@ugent.be (Lennert Bontinck),

karel.fonteyn@ugent.be (Karel Fonteyn), tom.dhaene@ugent.be (Tom
Dhaene), dirk.deschrijver@ugent.be (Dirk Deschrijver)

algorithms, and deep learning (DL) models in particular, can
learn complex features from raw ECG data. This has allowed
them to surpass traditional methods in tasks such as arrhythmia
classification and rhythm analysis (Sau and Ng, 2023; Somani
et al., 2021; Mincholé et al., 2019; Petmezas et al., 2022).

A key benefit of DL models is the fact that they can be run
fully autonomously on both stored and live ECG recordings.
This makes them ideal for integration in clinical decision sup-
port systems, where they can help clinicians in their complex
decision-making processes (Sau and Ng, 2023; Petmezas et al.,
2022; Mincholé et al., 2019). These models can perform multi-
label classification on a variety of diagnostic ECG statements,
including rare arrhythmia, offering potentially valuable second
opinions for clinical diagnostics. Furthermore, DL models have
shown promise in enhancing patient screening and risk stratifi-
cation, challenging conventional risk scores like the CHARGE-
AF score for atrial fibrillation (AFib), which primarily rely on
tabular data from the Electronic Health Record (EHR, Alonso
et al., 2013). This follows from the initial assumption that no
indicative patterns of AFib are observable on the ECG before
AFib onset or during normal sinus rhythm (NSR). However,
recent studies reveal that DL can predict new-onset AFib or
identify AFib from NSR ECGs with greater accuracy than tra-
ditional methods, suggesting their utility as risk score and in
selecting patient subgroups for extended screening (Attia et al.,

Preprint submitted to Expert Systems with Applications July 19, 2024

2019b; Christopoulos et al., 2020; Raghunath et al., 2021; Sau
and Ng, 2023; Gruwez et al., 2023). Moreover, DL has been
utilised to detect markers of systemic diseases such as COVID-
19 in ECG data, showcasing its ability to extend beyond tradi-
tional cardiac diagnostics (Sakr et al., 2023).

Nevertheless, widespread clinical application of advanced
DL models for ECG analysis is still limited, not least due to
their ”black-box” nature, which complicates their direct use as
standalone diagnostic tools (Sau and Ng, 2023; Somani et al.,
2021; Mincholé et al., 2019; Petmezas et al., 2022). While ac-
knowledging this restriction, DL models, when used appropri-
ately, can still significantly enhance decision support systems
by augmenting clinical judgement with previously unavailable
risk scores and insights into potential, overlooked diagnoses
(Attia et al., 2019b; Christopoulos et al., 2020; Raghunath et al.,
2021; Sau and Ng, 2023; Gruwez et al., 2023; Strodthoff et al.,
2021). However, other deployment challenges persist, in part
due to the reliance on complex, parameter-heavy models like
residual networks (ResNets) which are not inherently optimised
for ECG signal analysis.

Firstly, the number of computational operations these com-
plex state-of-the-art (SOTA) models need to perform during
inference, expressed in floating-point operations (FLOPs), is
enormous. This makes them significantly resource-intensive,
rendering them impractical for use in resource-constrained en-
vironments, such as inference on low-powered medical edge
devices without GPUs (Phukan et al., 2023). Secondly, the high
parameter counts of these models combined with the limited
and imbalanced availability of (public) ECG datasets increases
the risk for various unfavourable training behaviours. This in-
cludes the risk of overfitting and bias learning, requirement of
a significant amount of costly VRAM for GPU training, slow
gradient calculation due to the many trainable parameters and
thus a slower training process, and others (Phukan et al., 2023;
Liao et al., 2022; Gyawali, 2023; Buber and Diri, 2018; Somani
et al., 2021; Mincholé et al., 2019). Thirdly, as these mod-
els are adopted from other fields and not specifically tailored
to ECG analysis, there is no intuitive meaning as to what the
model configuration parameters mean in relation to the ECG
analysis. This results in the choice of a default, non-optimised
model configuration or the need for computationally very ex-
pensive and time-consuming configuration tuning, a process
which can increase the risk of overfitting, effectively decreasing
generalisation performance (Liao et al., 2022). Fourthly, the la-
tent space representation of the ECG signal using these models
has no intuitive meaning and is often large in size, can capture
unnecessary redundancies and makes modifications or exten-
sions to these architectures a challenging task (Somani et al.,
2021; Mincholé et al., 2019). Finally, given the nature of deep
SOTA models used, interpretability of the learned weights and
resulting predictions is hard and often limited to general post
hoc methods such as gradient-based class activation maps (Sel-
varaju et al., 2020; Chattopadhay et al., 2018; Wang et al., 2020;
Jiang et al., 2021) and saliency maps (Simonyan et al., 2014;
Smilkov et al., 2017).

In response to these challenges, this paper introduces EC-
Gencode: a compact and computationally efficient DL feature

encoder made specifically for ECG signals. ECGencode serves
as a building block for the creation of various model architec-
tures to perform ECG-specific tasks. It can be used to trans-
form a high dimensional raw input ECG to a smaller-sized la-
tent space with learned features relevant to the task, whilst of-
fering the following benefits:

ECG Specific, Compact, and Expert-Inspired Architec-
ture: ECGencode efficiently transforms high-dimensional raw
ECG data into a compact, information-rich latent space, pre-
serving the structure of an ECG. The novel DL model archi-
tecture, inspired by the expert-approved Filter Bank Common
Spatial Patterns (FBCSP, Ang et al., 2008) technique, intro-
duces a novel Spatial Gaussian Noise layer for regularisation
across both lead and channel dimensions.

Computationally Efficient and Low-Parameter Design:
Characterised by its low parameter count and the utilisation
of depthwise and depthwise separable convolutions, ECGen-
code delivers SOTA-level performance with significantly re-
duced computational demands. A binary classification model
incorporating ECGencode, designed for NSR AFib detection
and new-onset AFib prediction, achieves comparable results to
SOTA models while requiring over twenty times fewer parame-
ters and reducing FLOPs by tenfold. Such efficiency facilitates
deployment on resource-constrained edge devices, without re-
ducing the classification performance.

Intuitive Model Configuration and Interpretable Archi-
tecture: ECGencode’s DL architecture supports intuitive model
configuration tuning, closely aligned with ECG signal charac-
teristics, and produces an interpretable latent space mirroring
the ECG leads over time structure. Each layer is configured for
a distinct, visually interpretable task, from temporal frequency
filtering to spatial reduction into augmented leads, enriching
model transparency and understanding.

Versatile By Design: Deliberately proposed as a feature
encoder rather than a complete model, ECGencode is highly
adaptable, supporting diverse configurations and extensions tai-
lored to specific ECG analysis tasks. Its flexible and easy-to-
adopt nature makes ECGencode an ideal building block for de-
veloping clinically viable DL models, closing the gap between
the performance of computationally expensive models and the
resource constraints found in medical edge devices.

Many of these points relate to the computational efficiency
of a model, a key benefit of ECGencode, which encompasses
several aspects. Computational efficiency is primarily mea-
sured by the FLOPs count, indicating CPU cost when GPUs are
unavailable, as is often the case for medical edge devices. Ad-
ditionally, the parameter count denotes the number of weights
that need to be stored, impacting memory cost. A model with
fewer trainable parameters is also less susceptible to overfitting,
as it requires fewer weights to be learned, potentially leading
to better performance with less data and shorter training ses-
sions, both of which enhance computational efficiency in terms
of training cost. ECGencode’s intuitive parameterisation avoids
the need for computationally expensive grid searches to deter-
mine optimal hyperparameters, further improving training effi-
ciency. Finally, extensions using ECGencode benefit from the
computationally efficient reduction of a high-dimensional raw

2

ECG input to a compact latent space, ensuring lower computa-
tional cost in subsequent processing stages.

The structure of the paper is as follows. Section 2 provides
an overview of the related work. First, a brief history of ECG
signals and the transition towards automated ECG analysis is
provided. Next, the most common DL architectures used for
ECG analysis and available model interpretability techniques
are discussed. Afterwards, the issue of computational efficiency
for these complex models is explained in more detail and ex-
isting literature on improved computational efficiency is high-
lighted. Finally, based on these topics and the identified gaps,
ECGencode is positioned as a tool to intuitively build computa-
tionally efficient DL ECG analysis models. In Section 3, the ar-
chitecture of ECGencode is detailed, highlighting its computa-
tional efficiency and the novel ECG-specific normalisation lay-
ers that enhance model generalisability. Furthermore, the anal-
ogy with the traditional FBCSP framework is explored, provid-
ing a comprehensive understanding of the model’s layers and
learned weights. This visual interpretation of the architecture is
further elaborated as well. Section 4 presents a thorough eval-
uation of ECGencode through two models incorporating EC-
Gencode. Three binary ECG classification tasks are evaluated
using ECGencode model 1: detection of AFib-related patients,
detection of AFib during normal sinus rhythm (NSR) and pre-
diction of AFib before its first onset. Additionally, a fourth
task employs ECGencode model 2, extended with LSTM ca-
pabilities, for multi-label ECG classification. For these eval-
uations, the PTB-XL (Wagner et al., 2020, 2022; Goldberger
et al., 2000; Strodthoff et al., 2021) and CODE-15% (Ribeiro
et al., 2020, 2021; Lima et al., 2021) open-source data sets are
utilised. The results underscore ECGencode’s computational
efficiency, its adaptability for various tasks, and its ability to
match the performance of SOTA models with orders of mag-
nitude fewer parameters and FLOPs. Section 5 reflects on the
wider impact of ECGencode for automated ECG analysis. It
discusses the role of ECGencode as a highly suitable DL feature
encoder for diverse ECG analysis applications, motivated by the
obtained results. The potential for its integration in ECG anal-
ysis is explored, primarily due to its computational efficiency
and minimal resource demands. Finally, Section 6 summarises
the main conclusions of this research and discusses interesting
future work.

2. Related work

Automated ECG analysis has evolved significantly since its
inception in the early 1960s, leading to widespread adoption
in both clinical and consumer-grade devices (Petmezas et al.,
2022; Macfarlane and Kennedy, 2021). Modern medical ECG
acquisition devices and even smart wearables now commonly
feature automated analysis, employing a variety of rule-based,
expert-derived algorithms to diagnose heart conditions (Mac-
farlane and Kennedy, 2021; Faruk et al., 2021; Musa et al.,
2023).

The recent growth of the Internet of Medical Things has
led to a rapidly growing availability of medical data, including

ECG recordings linked with patients’ EHRs and other meta-
data (Musa et al., 2023). This increase in available data has
caused the rapid development of new automated ECG analy-
sis methods, with deep learning (DL) becoming the preferred
approach, outperforming traditional methods in various aspects
(Musa et al., 2023; Jaworski et al., 2022; Petmezas et al., 2022;
Sau and Ng, 2023; Somani et al., 2021; Mincholé et al., 2019).
DL’s main advantage is its ability to automatically extract fea-
tures, eliminating the need for predetermined expert diagnosis
rules and manual feature selection (Macfarlane and Kennedy,
2021; Sau and Ng, 2023). This capability of automatic feature
learning helps to uncover medical conditions or their precursors
not visible through conventional analysis, expanding diagnostic
capabilities and potentially enabling early disease detection and
screening (Sau and Ng, 2023; Attia et al., 2019b).

Whilst the field is rapidly evolving, some general DL issues
as well as specific medical adaptation issues are still present.
This section presents some of the most relevant issues and how
they are currently handled in literature.

2.1. Interpretability of Deep Learning in ECG Analysis
DL’s capability to automatically learn features from raw

ECG data is both its biggest strength and its biggest weak-
ness, as it introduces the black box problem (Musa et al., 2023;
Petmezas et al., 2022; Ayano et al., 2023; Hicks et al., 2021).
The black box problem refers to the decision-making process of
these DL models, which with their hundreds of thousands of pa-
rameters, remains opaque, lacking a clear interpretation or ex-
planation. In healthcare, where such explanations for diagnoses
are crucial, this opacity raises concerns and limits widespread
adoption, especially for the use of these models as a stand-alone
diagnostic tool (Hicks et al., 2021).

In response, various post hoc methods to provide some form
of interpretability to a trained DL model have been proposed.
Among the most popular in ECG research is post hoc visual
explanations, including saliency maps (e.g., vanilla saliency,
SmoothGrad) and gradient-based class activation maps (e.g.,
ScoreCAM, LayerCAM, GradCAM, GradCAM++), where a
heatmap highlights areas in the input ECG that influence the
prediction most (Simonyan et al., 2014; Smilkov et al., 2017;
Wang et al., 2020; Jiang et al., 2021; Selvaraju et al., 2020;
Chattopadhay et al., 2018). This allows clinicians to focus their
review on a specific portion of the ECG and potentially un-
cover new diagnostic markers. Some of these general DL tech-
niques have seen adaptation specifically for ECG analysis mod-
els, with ECGradCAM by Hicks et al. (2021) being a popular
example. For more information on interpretability techniques
in ECG analysis, see the review article by Ayano et al. (2023).

It is important to note that even without specifically address-
ing the black box issue, deep learning models can still offer
valuable support in clinical decision-making. They can predict
the likelihood of conditions such as arrhythmias or future car-
diac events, guiding closer monitoring for patients at risk in a
setting where no traditional risk scores are fit for determining
a group of patients that should be screened (Sau and Ng, 2023;
Raghunath et al., 2021; Christopoulos et al., 2020). Further-
more, they can simply bring potentially missed arrhythmia to

3

a clinician’s attention, serving as a valuable second opinion or
helping prioritise patient data for review, without providing a
definitive and final diagnosis (Ayano et al., 2023).

2.2. Common Model Architectures for ECG Analysis
Convolutional Neural Networks (CNNs) are the most com-

monly used type of architecture for DL ECG analysis. For
the majority of works, simple CNN architectures with alter-
nating convolution and pooling layers are used, although the
more sophisticated ResNets which were designed to tackle the
vanishing gradient problem in deep convolutional networks are
becoming more popular (Somani et al., 2021; Petmezas et al.,
2022; Sau and Ng, 2023; Jaworski et al., 2022).

Given the sequential nature of ECG data, Recurrent Neural
Networks (RNNs) have been proposed for complex ECG anal-
ysis tasks (Petmezas et al., 2022; Bozyigit et al., 2020). In par-
ticular, Long Short-Term Memory (LSTM) units and Gated Re-
current Units (GRUs) are popular RNN options for ECG anal-
ysis. However, their complexity often leads to overfitting, chal-
lenging their superiority over ResNets despite theoretical ben-
efits for time-series data (Petmezas et al., 2022; Bozyigit et al.,
2020). CNN-LSTM combinations, which first compress ECG
data into a manageable latent space via a CNN architecture be-
fore applying RNN analysis via LSTM units have proven ben-
eficial in some applications (Alamatsaz et al., 2024; Abdullah
and Al-ani, 2020).

These model architectures are adopted from other fields,
predominately the field of image processing, meaning they are
not explicitly tailored for ECG analysis which introduces sev-
eral issues. The lack of intuitive correlation between model
configuration parameters and ECG signal complexity, such as
the amount of residual blocks in a ResNet or the kernel size
of a CNN, often necessitates empirical, computationally inten-
sive model tuning. This complicates the optimisation process,
which often leads to the use of non-optimised default parame-
ters or an optimisation process which increases the risk for over-
fitting or bias learning (Jaworski et al., 2022; Liao et al., 2022).
For medical professionals, who may be less familiar with deep
learning intricacies but have proven significant contributions to
the field, this issue is even more pronounced. Petmezas et al.
(2022) provide a more detailed overview of commonly used DL
architectures for ECG analysis.

2.3. Computational Efficiency Optimisation
Besides the challenges with model architectures not being

optimised for ECG analysis, these models also tend to be com-
putationally demanding. They often have hundreds of thou-
sands of parameters and require significant amounts of FLOPs,
impacting both the training and inference phases. During train-
ing, especially with imbalanced datasets common in ECG anal-
ysis, a large number of parameters increases the risk of overfit-
ting. It also makes the training process longer and requires more
storage and VRAM during GPU training, which could cause an
economic barrier to entry for smaller research groups or clinical
settings (Xu and Du, 2023; Sharir et al., 2020). For inference,
these models require more resources and lead to longer pro-
cessing times and increased battery usage, limiting their use in

resource-constrained environments like medical edge devices
(Phukan et al., 2023).

Current approaches to enhance computational efficiency in
deep learning models often employ post-training operations,
focusing on reducing FLOPs and parameter count for the fi-
nal inference model, but starting from a trained model of con-
siderable complexity with all risks and requirements associ-
ated. Knowledge distillation, or teacher-student modelling, is
one such strategy, having been applied to ECG analysis to re-
duce a 12-lead model to a more computationally manageable
single-lead model (Sepahvand and Abdali-Mohammadi, 2022;
Qin et al., 2023). Similarly, multistage pruning has effectively
reduced the complexity of trained ECG models (Xiaolin et al.,
2021). However, these methods inherit the limitations of the
initial complex models they are based on. This includes the
potential of mimicking unwanted behaviour which results from
overfitting whilst requiring many computational resources and
enough data for training the initial complex model as well as a
computationally expensive hyperparameter grid search to find
optimal model configuration for this initial model. Other ap-
proaches start directly from a single-lead or even a single heart-
beat as input to learn a more compact model, but the found com-
putational efficiency gains largely result from alterations to the
input data rather than intrinsic architectural innovations (Khan
et al., 2023; Dubatovka and Buhmann, 2022; Alfaras et al.,
2019).

Architectural design for improved computational efficiency
has been explored in the general field of deep learning and has
seen some interest in the field of ECG analysis. Densely con-
nected convolutional networks (DenseNets), for example, re-
quire fewer parameters compared to traditional ResNet-based
models, mitigating overfitting risks (Huang et al., 2017). In
the context of AFib detection, a DenseNet-based model has
demonstrated comparable performance to SOTA models with
only 69,087 parameters (Cai et al., 2020). While the parame-
ter reduction is notable, DenseNet-based models typically still
entail high computational costs in terms of FLOPs due to their
deep layered structure. In contrast, the binary ECG classifi-
cation model for AFib detection during NSR and new-onset
AFib prediction presented in this paper (ECGencode model 1)
achieves similar performance to SOTA with merely 8,242 pa-
rameters and further reduces computational demands by min-
imising layer count and using specialised convolutions for a
lower FLOPs count. Recently, a study by Phukan et al. (2023)
explored the use of simpler CNN architectures to reduce com-
putational demands for deployment on edge devices. However,
as discussed in their work and revealed in the evaluation of Sec-
tion 4.3, while these architectures might lower FLOPs, they still
maintain a substantial number of parameters and fail to match
the performance of SOTA models in various tasks.

The quest for computational efficiency in ECG analysis has
also led to the development of custom chips for running tra-
ditional convolutional-based neural networks (Gu et al., 2023).
While these offer impressive energy and time efficiency during
inference, their requirement for specialised hardware, which
only supports specific types of operations, limits their general
applicability.

4

2.4. Positioning of ECGencode in literature
The commonly used DL models for ECG analysis, domi-

nated by traditional CNNs and ResNets, present several chal-
lenges. First, as these models were not originally designed for
the high dimensional ECG signal analysis nor deployment on
resource-constrained environments such as medical edge de-
vices, they require high computational resources. This includes
high FLOPs counts which necessitate more CPU power for in-
ference and high parameter counts which require more memory
to store the trained model and increase the risk of overfitting.
Existing solutions for improving this computational efficiency
and allowing them to be run on medical edge devices either
compromise performance for efficiency, necessitate specialised
hardware, start from a complex model with its associated draw-
backs, or fail to scale across different ECG analysis tasks (Gu
et al., 2023; Cai et al., 2020; Phukan et al., 2023). Second,
while models like ResNets offer some control over complexity,
such as adjusting the number of residual blocks, these config-
urations often lack a direct relationship to the ECG signals or
the specific task at hand. This results in a default, overly com-
plex configuration, or the requirement of time-consuming, em-
pirical, and computationally very expensive model optimisation
through a hyperparameter grid search, which increases the risk
of overfitting and bias learning (Liao et al., 2022). Third, the la-
tent space representations of the input ECG from these models
are large and unstructured with no straightforward way of be-
ing extended. This latent space representation combined with
the deep structure of the commonly used models and high pa-
rameter counts also makes intrinsic interpretation of the learned
parameters hard, if not impossible.

To bridge these gaps, ECGencode is introduced as a versa-
tile and computationally efficient DL feature encoder, serving
as a building block for a wide possibility of DL ECG analy-
sis models. Based on the expert-inspired FBCSP approach, it
transforms complex ECG inputs into a manageable latent space
that retains the ECG’s structure, suitable for use and extension
in a variety of DL ECG analysis models. Its compact and com-
putationally very efficient architecture, employing depthwise
and depthwise separable convolutions, allows for the creation
of models with minimal parameters and FLOPs which are ap-
plicable for deployment on edge devices without compromis-
ing performance. The introduction of a novel, ECG-specific,
Spatial Gaussian Noise regularisation technique provides satis-
factory generalisation without impact on inference speed. Fur-
thermore, ECGencode supports intuitive model configuration
and offers interpretability at both the architectural and parame-
ter levels. Not only does this facilitate researchers to configure
a custom DL model, but it also allows for model-specific vi-
sualisations and some intrinsic parameter interpretation besides
existing post hoc visualisation techniques.

It is noted that unlike pre-trained, general ECG feature en-
coders, such as those using self-supervised learning or auto-
encoders, ECGencode is crafted as a trainable component for
supervised learning models. This ensures the extraction of task-
relevant features, shown to be generalisable to data sets from
other clinics, enabling performance that matches or surpasses
SOTA models while maintaining efficiency and interpretability

(Gedon et al., 2021; Del Pup and Atzori, 2023; Liu et al., 2021;
Jang et al., 2021; Kuznetsov et al., 2021; Christ et al., 2018).

3. ECGencode Feature Encoder

The challenges outlined in the previous section highlight the
need for a deep learning feature encoder that prioritises compu-
tational efficiency without sacrificing representation capability,
while also remaining versatile enough through intuitive model
configuration parameterisation for use in various tasks based on
a raw ECG input. To meet these requirements, this section in-
troduces ECGencode, a compact deep learning feature encoder
designed for standard 12-lead ECG signals. Despite its mini-
mal use of learning parameters and FLOPs, ECGencode retains
crucial information in its latent space, enabling it to perform
competitively with far more complex models across different
problem settings, as evidenced by the evaluation performed in
Section 4.

This section offers a comprehensive overview of the EC-
Gencode architecture. Section 3.1 discusses the model’s tempo-
ral, spatial, and feature convolutions. To enhance feature gen-
eralisability, ECGencode incorporates ECG-specific normalisa-
tion and an ECG-specific novel Spatial Gaussian Noise regu-
larisation technique, which are detailed in Section 3.2. Sec-
tion 3.3 presents an analysis of the model’s computational ef-
ficiency, revealing a significant reduction in FLOPs and train-
able parameters. The architecture provides options for increas-
ing model complexity and for including extensions, such as a
CNN-LSTM extension, through intuitive model configuration
parameterisation and a latent space that retains the ECG struc-
ture as discussed in Section 3.4. Lastly, Section 3.5 explores
various ECGencode-specific visualisation techniques, both in-
trinsic and post hoc, made possible by the architecture’s novel
design.

3.1. Compact Convolutional Architecture for Automated ECG
Feature Encoding

Figure 1 presents a high-level overview of the ECGencode
architecture as configured in a model for binary ECG classifi-
cation (ECGencode model 1). The input consists of a standard
10-second 12-lead ECG sampled at 500Hz, represented as a
12 × 5,000 2D matrix. ECGencode will convert this input to a
3D matrix by adding an additional channel dimension, resulting
in a 12 × 5,000 × 1 3D matrix that can be interpreted as leads
× time points × channels. This allows ECGencode to explicitly
retain the 2D structure of the ECG signal throughout its differ-
ent layers, resulting in a final latent space of shape 4 × 40 × 4
which can be interpreted as a signal of 4 augmented leads, 40
time points and 4 channels. The final layer of the first ECGen-
code model links this latent space generated by ECGencode to
the binary ECG classification output through a fully connected
layer with softmax activation. In this configuration, the latent
space is simply flattened into a one-dimensional vector before
softmax activation, resulting in a compact model with a total of
only 8,242 parameters.

5

Input data
12 x 5,000 x 1

ECGencode
12 x 5,000 x 1 -> 4 x 40 x 4

Extension(s)
4 x 40 x 4 -> 640

Output
640 -> 2

ECG

Input shape: 12 x 5000

Number of params: 0
Output shape: 12 x 5,000 x 1

Temporal
Convolution

Kernels: 16, 64, 256, 1,024
Output channels: 4, 4, 4, 4
Striding: 8

Number of params: 5,440
Output shape: 12 x 625 x 16

1D Flatten

New dimensions:
(leads * timepoints
* channels)

Number of params: 0
Output shape: 640

Softmax
classifier

Dense layers: 1
Dense units: 2
Activations: Softmax

Number of params: 1,282
Output Shape: 2

Spatial
Convolution

Augmented leads: 4

Number of params: 816
Output shape: 4 x 625 x 16

Feature
Convolution 1

Kernel | output channels: 32 | 4
Depth mulitplier | stride: 1 | 8

Number of params: 640
Output shape: 4 x 79 x 4

Feature
Convolution 2

Kernel | output channels: 8 | 4
Depth mulitplier | stride: 1 | 2

Number of params: 64
Output shape: 4 x 40 x 4

ECGencode model 1
Task: Binary classification

Focus: Computational efficiency

Total parameters: 8,242

Total FLOPs: ± 83M

Figure 1: A high-level overview of ECGencode model 1 used for binary ECG classification. This model, and the ECGencode configuration it uses, focus on
achieving the highest computational efficiency possible without significant classification performance loss. The 2D input consists of a standard 10-second 12-lead
ECG sampled at 500Hz, represented as a 12 × 5,000 matrix. ECGencode outputs a compact 3D latent space with dimensions 4 × 40 × 4. Binary ECG classification
is achieved using a fully connected layer with softmax activation, applied to the 1D flattened latent space. This model’s total parameter count is 8,242 and FLOPs
count is estimated to be ± 83M.

ECGencode comprises four sequential components: a tem-
poral convolution, a spatial convolution, and two feature convo-
lutions. These components are inspired by the FBCSP method
of Ang et al. (2008), a well-established approach in feature en-
gineering for EEG signals. In FBCSP, temporal filters partition
the signal into multiple frequency banks, followed by spatial
filters using the Common Spatial Patterns (CSP) algorithm by
Koles et al. (1990) to maximise inter-class variance for each fre-
quency bank. Subsequent feature selection methods like mutual
information reduce dimensionality and redundancy, paving the
way for classifiers such as linear discriminant analysis (LDA,
Izenman, 2008).

Previous efforts to adapt the FBCSP method for deep learn-
ing have primarily focused on EEG analysis in brain-computer
interface applications, such as the EEGNet model by Lawh-
ern et al. (2018) commonly used as benchmark. In contrast,
ECGencode is explicitly optimised for standard 12-lead ECG
signals rather than EEG signals and high computational effi-
ciency, offering a more compact and efficient feature encoder
compared to EEGNet and its variants (Lawhern et al., 2018;
Roots et al., 2020; Wang, 2023; Zhang et al., 2022; Huang et al.,
2020; Riyad et al., 2020).

3.1.1. Temporal Convolution
The temporal convolution component, as shown in Figure

2, is designed to capture a range of temporal dependencies in
the ECG signal. Inspired by the filter banking stage of FBCSP,
this convolution features kernels of varying lengths that pro-
cess each lead independently to produce an output comparable
to that of a frequency filter. These kernels, with dimensions
1 × 16 × 1, 1 × 64 × 1, 1 × 256 × 1, and 1 × 1,024 × 1, cap-
ture information at multiple temporal scales: 0.03, 0.1, 0.5, and

2 seconds, respectively. Employing kernels of diverse tempo-
ral lengths allows ECGencode to capture both high-frequency
and low-frequency information. Kernels with a shorter tempo-
ral axis focus on high-frequency details, whereas those with a
longer temporal axis help in smoothing the signal and capturing
low-frequency traits. Whilst the longer temporal kernels can
provide valuable feature extraction, their use should be consid-
ered keeping the desired inference device in mind, as they can
easily blow up the FLOPs count of the model. For example, the
four 1×1,024×1 kernel in ECGencode model 1 are responsible
for more than 60M out of the total ± 83M FLOPs. Due to the
high input sampling rate of 500Hz, a stride of 8 is applied to
downscale the temporal axis.

Each of these kernel convolutions creates four output chan-
nels, which are all merged along the channel axis, resulting in
an ECG-like signal of size 12 × 625 × 16 with temporal alter-
ations based on frequency filtering along the channel axis and
a considerably down-scaled temporal axis. Given that the in-
put ECG only has one input channel, using 2D depthwise or
2D depthwise separable convolutions, as explained in Section
3.3, would not yield any computational or parameter efficiency
gains, explaining the use of standard 2D convolutions in the
temporal convolution component.

3.1.2. Spatial Convolution
The spatial convolution component, represented in Figure

3, takes as its input the output from the preceding temporal
convolution component. It aims to capture spatial correlations
across all twelve ECG leads, similar to the CSP stage in FBCSP
(Ang et al., 2008; Koles et al., 1990). Four independent depth-
wise 2D convolutions are utilised, each with a kernel of size
12×1×1. This results in four augmented leads, each synthesised

6

Temporal Convolution
Four separate 2D convolutions with a striding of eight functioning as temporal convolutions (TCs)

with varying kernels (K) and output filters (OF) finally merged on the channel axis.

TC 1
K: 1 x 16 x 1
OF: 4

5,000

12

1 x 16 x 1

12

625

4

12

625

16

12

625

4

12

625

4

12

625

4

5,000

12

1 x 1024 x 1

5,000

12

1 x 256 x 1

5,000

12

1 x 64 x 1TC 2
K: 1 x 64 x 1
OF: 4

TC 3
K: 1 x 256 x 1
OF: 4

TC 4
K: 1 x 1,024 x 1
OF: 4

12

5,000

Figure 2: In-depth view of the temporal convolution component within ECGencode, configured per ECGencode model 1 specified in Figure 1. Four distinct standard
2D convolutions are employed, each with a stride of eight. Kernel sizes vary along the temporal axis: 1 × 16 × 1, 1 × 64 × 1, 1 × 256 × 1, and 1 × 1,024 × 1. The
outputs of these convolutions are combined along the channel axis to form the final output.

from all twelve original leads. The selection of four augmented
leads serves dual purposes: it both reduces spatial complexity
and aligns with the optimal number of leads for neural network
training found by Lai et al. (2021).

Unlike standard 2D convolutions, which would employ a
kernel of 12 × 1 × 16, each depthwise 2D convolution applies
16 distinct 12 × 1 × 1 kernels to each input channel. Without
the use of a depth multiplier, this yields 16 unique output chan-
nels for each convolution. Combining these outputs along the
lead axis produces a final output of size 4 × 625 × 16. This
output maintains the frequency-based temporal variations from
the previous stage while reducing the original 12 leads to four
augmented ones. Besides allowing explicit retention of the in-
put channels, depthwise convolutions also offer computational
efficiency benefits as further explained in Section 3.3.

Before the spatial convolution, lead-based batch normali-
sation (BN, Ioffe and Szegedy, 2015) is applied to the output
of the temporal convolution. This normalisation facilitates the
training of ECGencode and enhances the intrinsic interpretabil-
ity of the spatial convolution’s learned weights, as detailed in
Section 3.2. The output from the spatial convolution block is
activated using the Exponential Linear Unit (ELU) function,
which introduces non-linearity into the network and addresses
the vanishing gradient problem (Clevert et al., 2016). It is note-
worthy that the preceding temporal convolution intentionally
omits non-linearity as it increases the computational complex-
ity without improving performance, aligning with the design
decisions of the EEGNet architecture (Lawhern et al., 2018).

3.1.3. Feature Convolutions
The feature convolutions in ECGencode serve to further re-

fine and compact the latent space. This stage automates the
traditional process of manual feature extraction that follows the
application of FBCSP, learning a final latent space directly from
the data. Figure 4 provides details on the first feature convolu-
tion, which uses a depthwise separable convolution to achieve
computational efficiency while generating a more compact fea-
ture representation. Specifically, the depthwise convolution em-
ploys a kernel of 1 × 32 × 1 with a stride of eight, resulting in
an output of dimensions 4 × 79 × 16. A subsequent pointwise
convolution with a kernel of 1 × 1 × 16 produces four output
filters, leading to an output of size 4 × 79 × 4.

The second feature convolution, shown in Figure 5, builds
upon the output of the first. It also employs a depthwise sepa-
rable convolution but with a kernel of 1 × 8 × 1 and a stride of
two. This convolution retains four output filters, yielding a final
latent space of dimensions 4 × 40 × 4.

Depthwise separable convolutions, as further explained in
Section 3.3, contribute to the computational efficiency of EC-
Gencode while leveraging cross-channel information to con-
struct the final latent space. Both feature convolutions also in-
corporate channel-based BN followed by an ECG-specific novel
Spatial Gaussian Noise regularisation technique, which is fur-
ther discussed in Section 3.2. This regularisation improves both
the stability and generalisability of ECGencode during training.
While the first feature convolution continues to use the ELU ac-
tivation function, the second employs a sigmoid activation func-

7

Spatial Convolution
Four separate depthwise 2D convolution functioning as spatial convolutions (SCs)

with a kernel of 12 x 1 x 1 to create four augmented leads finally merged on the lead axis.

SC 1

16

12 x 1 x 1

12

625

Lead-based BN
12

625

16

SC 2

16

12 x 1 x 1

12

625

SC 3

16

12 x 1 x 1

12

625

SC 4

16

12 x 1 x 1

12

625

1

625

16

1

625

16

1

625

16

1

625

16

16

4

625

E
L
U

Figure 3: In-depth view of the spatial convolution component within ECGencode, configured per ECGencode model 1 specified in Figure 1. The input for this
stage is the output from the temporal convolution shown in Figure 2. Four separate depthwise 2D convolutions are employed, each with a kernel size of 12 × 1 × 1,
covering all leads. The outputs, termed augmented leads based on the original twelve leads, are combined along the lead axis to produce the final output.

tion. The sigmoid activation ensures that all features in the final
latent space lie within the 0 to 1 range, beneficial for contexts
requiring a probabilistic interpretation of these features.

3.2. ECG Specific Normalisation and Regularisation
ECGencode incorporates two techniques to enhance train-

ing stability and performance: Batch normalisation (BN) on
different axes and a novel spatial Gaussian noise regularisation
technique. Additionally, the data used in this study has under-
gone minimal preprocessing through ECG-device-specific nor-
malisation, as discussed in Section 4.1.

3.2.1. Different Axis Batch Normalisation
BN plays a significant role in the spatial and feature convo-

lution blocks of ECGencode. During training, BN normalises
its output over a specified axis using the mean and variance
statistics computed over a mini-batch of training samples. Dur-
ing inference, the model uses a moving average of these statis-
tics, obtained during training, instead (Ioffe and Szegedy, 2015).

By mitigating the internal covariate shift problem, BN fa-
cilitates faster and more stable learning, while also reducing
reliance on specific weight initialisation choices. Additionally,
it provides a form of implicit regularisation, thus limiting the
risk of overfitting (Luo et al., 2019). Due to its benefits and low
computational cost during both training and inference, BN is
integrated into ECGencode where applicable.

In the feature convolution blocks, BN is performed on the
channel axis (feature maps) as is conventional in literature. How-
ever, in the spatial convolution block, where each channel un-
dergoes independent processing through the use of depthwise

convolution, a lead axis-based BN is employed. This allows a
more intrinsic interpretation of the learned kernel weights for
the spatial convolution, which can aid the interpretability.

3.2.2. Novel Spatial Gaussian Noise Regularisation
To explicitly enhance regularisation and prevent overfitting

while having minimal impact on the training speed, ECGen-
code introduces a novel technique which has been named Spa-
tial Gaussian Noise. Spatial Gaussian Noise, used in the feature
convolutions of ECGencode, combines concepts from spatial
dropout (Tompson et al., 2015) and Gaussian noise regularisa-
tion.

In spatial dropout, a complete slice of the channel axis in the
input data is zeroed out with a given probability. This technique
is favoured for time series data like ECG, where neighbouring
data points exhibit strong correlation, making it more effective
than regular dropout which would randomly zero out individual
data points rather than a complete slice.

However, due to ECGencode’s compact latent space, fully
nullifying an entire slice during spatial dropout can lead to ex-
cessive regularisation, negatively impacting the learning speed
and overall model performance. To address this, a custom spa-
tial Gaussian noise regularisation technique is employed. This
technique applies multiplicative Gaussian noise with a user-
defined mean and standard deviation to values from a slice in
the specified axis with a given probability. Empirical findings
demonstrate that combining regular spatial dropout using a low
probability followed by the custom spatial Gaussian noise with
a higher probability yields the most effective regularisation and
generalisation performance for ECGencode. The spatial Gaus-

8

Feature Convolution 1
A 2D depthwise separable convolution functioning as a feature convolution.

In a depthwise separable convolution a depthwise convolution is followed by a pointwise convolution.

BN

16

4

625

Regularisation

4

4

79

Depthwise separable convolution

16

4

625

1 x 1 x 16

16

4

79
Pointwise

Output filters: 4

Depthwise
Depth multiplier: 1

Striding: 8 | Kernel 1 x 32 x 1

1 x 32 x 1 E
L
U

Figure 4: In-depth view of the first feature convolution within ECGencode, configured per ECGencode model 1 specified in Figure 1. The input originates from the
spatial convolution shown in Figure 3. This stage employs a depthwise separable convolution, with the depthwise convolution using a kernel of 1 × 32 × 1 and a
stride of eight. The pointwise convolution has a kernel of 1 × 1 × 16 and produces four output filters.

Feature Convolution 2
A 2D depthwise separable convolution functioning as a feature convolution.

In a depthwise separable convolution a depthwise convolution is followed by a pointwise convolution.

BN Regularisation

4

4

40

4

4

79

Depthwise separable convolution

1 x 8 x 1

4

4

79

Depthwise
Depth multiplier: 1

Striding: 2 | Kernel 1 x 8 1

1 x 1 x 4

4

4

40
Pointwise

Output filters: 4

S
I
G
M
O
I
D

Figure 5: In-depth view of the second feature convolution within ECGencode, configured per ECGencode model 1 specified in Figure 1. The input is the output of
the first feature convolution depicted in Figure 4. A depthwise separable convolution with a kernel of 1×8×1 and a stride of two is used. The pointwise convolution
has a kernel of 1 × 1 × 4 and four output filters.

Lead-Based

(a) Lead 1 considered

Channel-Based

(b) Channel 3 considered

Figure 6: Visualisation of data considered for lead-axis-based and channel-axis-
based normalisation and regularisation.

sian noise regularisation for the first feature convolution (Figure
4) happens on a lead-axis basis whereas the spatial Gaussian
noise regularisation in the second feature convolution (Figure
5) happens on a channel-axis basis. The difference between
which data is considered for the different axis-based regularisa-
tion is shown in Figure 6. Notably, as this regularisation is only
performed during training, it has no impact on computational
efficiency during inference.

3.3. Computational Efficiency Through Depthwise and Depth-
wise Separable Convolutions

To efficiently extract hierarchical features from input ECG
signals, ECGencode employs convolutional layers. Traditional

2D convolutions, although effective, are computationally de-
manding in terms of FLOPs, and can require many trainable
parameters. To mitigate this computational burden, ECGencode
incorporates depthwise and depthwise separable convolutions,
offering a more efficient computational profile where applica-
ble.

Figures 7, 8 and 9 provide a visual demonstration of the
FLOPs required for these three types of convolutions: standard
2D, depthwise 2D, and depthwise separable 2D. For compara-
tive clarity, each convolutional type is applied to the same in-
put data (12 × 5,000 × 16) and configured to produce the same
output shape (1 × 5,000 × 64). It should be noted that the
FLOPs calculations presented are theoretical estimates based
on a straightforward CPU implementation of these algorithms
without padding. It is also mentioned that ECGencode does not
use bias terms for its various convolutions. Not only does this
save additional parameters and FLOPs, but the use of BN after
the convolutions makes the use of a bias term in the convolution
redundant (Ioffe and Szegedy, 2015).

3.3.1. Standard 2D Convolution
As depicted in Figure 7, a standard 2D convolution effec-

tively involves a 3D convolutional operation, as it incorporates
both the 2D signal dimensions and the input channels as the
third dimension. The kernel used in this type of convolution
performs element-wise multiplications and additions on this 3D
input to produce each output channel.

9

2D Convolution
Standard 2D convolution with a 12 x 1 x 16 kernel on a 12 x 5,000 x 16 shaped input.
Striding of one is used with 64 output channels. The total parameter count is 12 352.

FLOPS calculation
1 kernel pass: 2*(12 * 1 * 16) = 384 FLOPS
5,000 kernel passes per output filter
64 kernels for 64 output channels

5,000 bias operations per output channel

Total: (384 * 5,000 * 64) + (64 * 5,000)
= 123,200,000 total FLOPS

12 x 1 x 16 kernel

...

12

5,000

16

64 Outputs

...

1

5,000

64

Figure 7: Operational steps, parameters and FLOPs analysis for a standard 2D convolution.

Depthwise 2D Convolution
Depthwise 2D convolution with a 12 x 1 x 1 kernel on a 12 x 5,000 x 16 shaped input.

Striding of one is used with a depth multiplier of 4 to obtain 16 * 4 = 64 output channels. The total parameter count is 832.

FLOPS calculation
1 kernel pass: 2*(12 * 1 * 1) = 24 FLOPS
5,000 kernel passes per output channel
16 kernels per depthwise convolution
4 depth multiplier for 4 * 16 = 64 output channels

5,000 bias operations per output channel

Total: (24 * 5,000 * 16 * 4) + (64 * 5,000)
= 8,000,000 total FLOPS

...

12

5,000

16
16 Outputs

...

1

5,000

16

D
e
p
t
h

m
u
l
t
i
p
l
i
e
r

4

16 independent
12 x 1 x 1

kernels

16 independent
12 x 1 x 1

kernels

...

16 Outputs

...

1

5,000

16

...

1

5,000

64

...

Figure 8: Operational steps, parameters and FLOPs analysis for a depthwise 2D convolution.

Given an input with dimensions H×W×Cin, a kernel of size
K1 × K2 × Cin, a stride S , and Cout output channels, the FLOPs
for this operation can be calculated using Equation 1. Here,
H′, W ′, K′standard, and Biasstandard represent the output height,
output width, FLOPs for each kernel pass, and the FLOPs for
bias addition, respectively. These terms are defined in Equation
2. Note that K′standard is multiplied by two to account for both
multiplication and addition for each weight in the kernel.

Using Equation 1 for the standard convolution visualised in
Figure 7, the total FLOPs is found to be 123,200,000.

FLOPsstandard = (K′standard × H′ ×W ′ ×Cout)
+ Biasstandard (1)

H′ =
⌈

H − K1 + 1
S

⌉
W ′ =

⌈
W − K2 + 1

S

⌉
K′standard = 2 × (K1 × K2 ×Cin)

Biasstandard = Cout × H′ ×W ′ (2)

The number of parameters for a standard 2D convolution is
given by Equation 3, which accounts for both the kernel weights
and the bias terms for each output channel. For the standard 2D
convolution in Figure 7 with 64 output kernels, the total number
of parameters is 12,352.

Paramsstandard = ((K1 × K2 ×Cin) + 1) ×Cout (3)

3.3.2. Depthwise 2D Convolution
Figure 8 showcases depthwise 2D convolution, a more com-

putationally efficient variant that processes each input channel

10

Depthwise separable 2D Convolution
Depthwise 2D convolution followed by a pointwise 2D convolution.

Deptwhise 2D convolution with a 12 x 1 x 1 kernel, striding of one and a depth multiplier of 1.
Pointwise 2D convolution with a striding of 1 and 64 output channels. The total parameter count is 1,296.

FLOPS calculation
-- Depthwise stage --

1 kernel pass: 2*(12 * 1 * 1) = 24 FLOPS
5,000 kernel passes per output channel
16 kernels per depthwise convolution
1 depth multiplier for 1 * 16 = 16 output channels

5,000 bias operations per output channel

Total: (24 * 5,000 * 16 * 1) + (16 * 5,000)
= 2,000,000 depthwise FLOPS

-- Pointwise stage --

1 kernel pass: 2*(1 * 1 * 16) = 32 FLOPS
5,000 kernel passes per output channel
64 kernels for 64 output channels

5,000 bias operations per output channel

Total: (32 * 5,000 * 64) + (64 * 5,000)
= 10,560,000 pointwise FLOPS

-- Total Flops --

Total: 2,000,000 + 10,560,000
= 12,560,000 total FLOPS

...

12

5,000

16

16 Outputs

...

1

5,000

16

16 independent
12 x 1 x 1
2D kernels

...

1

5,000

64

Depth multiplier 1

1 x 1 x 16
pointwise 2D kernel

64 outputs

Figure 9: Operational steps, parameters and FLOPs analysis for a depthwise separable 2D convolution.

separately. This channel-wise operation eliminates the fusion
of information across different input channels, substantially re-
ducing both FLOPs and the number of parameters.

A depth multiplier D is introduced to control the output
channel count, allowing it to be a multiple of the input channels.
The multiplier D determines the number of output channels
generated per input channel, effectively specifying the number
of distinct kernels per input channel.

Given an input with dimensions H×W ×Cin, kernel dimen-
sions K1 × K2 × Cin, a stride S , and a depth multiplier D, the
FLOPs for this operation are governed by Equation 4. Here, H′

and W ′ are as defined in Equation 2, and K′depth and Biasdepth are
outlined in Equation 5.

Application of Equation 4 to the depthwise convolution in
Figure 8 yields a total of 8,000,000 FLOPs. Remarkably, this
constitutes just 6.49% of the FLOPs required for a standard 2D
convolution with identical input and output dimensions. The
ratio FLOPsdepthwise

FLOPsstandard
can be roughly approximated as D

Cout
, highlight-

ing the computational advantages of depthwise 2D convolutions
when D is significantly smaller than Cout.

FLOPsdepthwise = (K′depth × H′ ×W ′ ×Cin × D)

+ Biasdepth (4)

K′depth = 2 × (K1 × K2 × 1)

Biasdepth = Cin × D × H′ ×W ′ (5)

The parameter count for depthwise 2D convolutions is cal-
culated using Equation 6. For the instance in Figure 8 with 16

input channels and a depth multiplier of 4, the total is 832 pa-
rameters. This accounts for merely 6.74% of the parameters
needed for a standard 2D convolution.

Paramsdepthwise = ((K1 × K2) + 1) × (Cin × D) (6)

3.3.3. Depthwise Separable 2D Convolution
As illustrated in Figure 9, depthwise separable 2D convo-

lution builds upon the efficiency of depthwise 2D convolution
but reintegrates cross-channel information. This two-step pro-
cess consists of an initial depthwise 2D convolution followed
by a pointwise 2D convolution. The former operates identically
to the previously described depthwise convolution, whereas the
latter employs a standard convolution with a kernel size of 1 ×
1 ×Cin, facilitating the merging of information from the depth-
wise output channels.

Employing Equation 7, the FLOPs for this convolution type
can be calculated. Here, H′ and W ′ align with those in Equation
2, and K′depth and Biasdepth are consistent with those in Equation
5. K′point and Biaspoint are formulated in Equation 8.

For the depthwise separable convolution presented in Figure
9, Equation 7 yields a total of 12,560,000 FLOPs. This consti-
tutes merely 10.19% of the FLOPs required for a standard con-
volution of identical dimensions, yet is 1.57 times greater than
that of a depthwise convolution. Therefore, depthwise sepa-
rable convolutions offer a nuanced balance between computa-
tional efficiency and channel mixing, particularly beneficial in
the feature convolution stage of ECGencode.

11

FLOPsseparable = FLOPsdepthwise + FLOPspointwise
standard

= ⟨(K′depth × H′ ×W ′ ×Cin × D)

+ Biasdepth⟩

+ ⟨(K′point × H′ ×W ′ ×Cout)

+ Biaspoint⟩ (7)

K′point = 2 × (1 × 1 ×Cin × D)

Biaspoint = Cout × H′ ×W ′ (8)

Employing Equation 6 for the depthwise stage yields 208
parameters, whilst Equation 3 for the pointwise stage (standard
2D convolution with a kernel of size 1 × 1 × Cin) results in
1,088 parameters, totalling 1,296. This is a mere 10.49% of the
parameters required for a standard convolution.

3.3.4. Striding over Pooling
Conventional convolutional neural networks often employ a

combination of convolutional layers for feature extraction and
pooling layers for latent space downscaling. However, it has
been demonstrated that substituting pooling layers with convo-
lutional layers that use increased striding can enhance model
performance, as this allows the network to effectively learn a
downscaling strategy (Springenberg et al., 2015). Although em-
ploying striding in place of pooling preserves the FLOPs count,
it increases the model’s parameter count due to the learnable
nature of the downscaling convolution. To achieve computa-
tional efficiency while maintaining compactness, ECGencode
integrates striding directly into its primary convolutional layers,
thereby eliminating the need for separate downscaling convolu-
tions and consequently decreasing both FLOPs and parameters
count. Empirical findings show that the integration of these
two convolutions into one results in a negligible performance
decrease for ECGencode whilst requiring considerably fewer
parameters and FLOPs.

3.4. Controllable and Extendable Feature Complexity

Designed for versatility, ECGencode offers a rich configura-
tion space through intuitive configuration parameters, facilitat-
ing adaptation to various latent space complexities and problem
settings. In addition to this inherent flexibility, ECGencode also
easily supports extensions, such as the incorporation of LSTM
units. This section discusses these two primary directions for
customising ECGencode to address a diverse range of applica-
tions.

3.4.1. Parameter-Driven Control of Latent Space Complexity
ECGencode enables control over its complexity via multi-

ple intuitive configuration parameters, with the number of aug-
mented leads, time points, and output channels being the most
important.

Augmented Leads and Time Point Regulation

The number of parallel spatial convolutions directly cor-
relates with the number of augmented leads, which primarily
encode spatial information. Although there is no explicit up-
per limit on the number of augmented leads, a practical up-
per bound is suggested to be eight. This number aligns with
the eight physical leads used in 12-lead ECG recordings, where
aVR, aVL, aVF, and III are derived as linear functions of leads
I and II (Attia et al., 2019b).

Control over the amount of time points retained in the latent
space is achieved through the manipulation of striding parame-
ters. Early-stage striding is recommended for significant FLOP
reduction in later stages, especially when working with a high-
resolution input of 500Hz. This makes the increase of striding
favourable in early stages whilst the decrease of striding is most
computationally efficient in later stages.

Adjustment of Output Channels
ECGencode’s internal and external complexity can be fur-

ther fine-tuned through the number of output channels in its
temporal and feature convolution components. The amount of
different length kernels and output channel counts in the tempo-
ral convolution stage influences internal complexity. The final
pointwise step in the last feature convolution is what ultimately
decides the amount of latent space output channels and thus
the external complexity. Increasing the depth multiplier in the
depthwise step of the feature convolutions offers an additional
lever for the internal complexity of ECGencode. In practice,
aligning internal and external complexities yields optimal per-
formance.

3.4.2. Incorporating Advanced Extensions
While the ECGencode configuration presented in Figure 1

serves as a highly compact and computationally efficient setup
for binary ECG classification, featuring a flattened latent space
and a singular softmax-activated dense layer, ECGencode is de-
signed to support sophisticated extensions. These extensions
are enabled by the convolutional nature of ECGencode which
retains the sequential patterns present in ECG signals.

LSTM for Sequential Modelling
Transforming the ECGencode output from its initial 3D for-

mat (augmented leads× time points× channels) to a 2D config-
uration (augmented time points× (augmented leads∗channels))
enables the integration of LSTM units. This results in a hybrid
CNN-LSTM model capable of exploiting the inherent tempo-
ral dynamics of ECG signals. Although beneficial for context-
sensitive feature extraction, this extension demands significant
additional computational resources in terms of both parameters
and FLOPs and as such isn’t suitable for all applications.

Complex Output Models
Task-specific requirements may necessitate more intricate

output models. Incorporating a fully connected dense layer be-
fore the softmax layer can be advantageous for complex ECG
classification tasks, including multi-class and multi-label sce-
narios. While the experiments in this paper are limited to ECG
classification, ECGencode is versatile enough for a range of ap-
plications, including ECG regression tasks which also require
effective ECG feature encoding.

12

3.5. ECGencode-Specific Visualisation

Inspired by the proven FBCSP technique (Ang et al., 2008),
ECGencode has been designed such that each layer fulfils a dis-
tinct role, as detailed in Section 3.1. This structured design
enhances both the intrinsic interpretability of the learned pa-
rameters and post hoc visualisation capabilities. A preliminary
examination of both these aspects is presented below, demon-
strating that the layers within ECGencode exhibit the antici-
pated behaviour, and confirming the effectiveness of the ar-
chitectural design. These preliminary visualisations and inter-
pretations reveal ECGencode’s potential to facilitate advanced
medical interpretability, positioning ECGencode as a promis-
ing tool for further, medically validated, investigative research
towards model explainability.

Visualisation of Temporal
Convolution Output for Lead II

Input
ECG

Kernel
1

Kernel
16

Merged

(a) Temporal Convolution

AFib Positive Heatmap
SmoothGrad vs Grad-CAM++

Lead I
SmoothGrad

Lead I
Grad-Cam++

Lead V6
SmoothGrad

Lead V6
Grad-Cam++

(b) AFib positive ECG Heatmap

(c) Spatial Convolution Lead Weights

Figure 10: Various visualisation techniques applied to the first ECGencode
model for binary ECG classification. Figure 10a depicts the initial segment
of Lead II from an input ECG, both in its raw form and as processed by tem-
poral convolutions using 2D kernels of dimensions 1 × 16 × 1 (Kernel 1) and
1× 1,024× 1 (Kernel 16), along with the combined output from all 16 temporal
convolution kernels. Figure 10b presents both a SmoothGrad saliency map and
a Grad-Cam++ class activation map for the same segments on a correctly clas-
sified AFib-positive ECG. Figure 10c reveals the relative importance of each
lead in generating a single augmented lead in the spatial convolution, based on
the intrinsic evaluation of the learned kernel weights.

3.5.1. Insights into the Temporal Convolution
Designed to emulate the frequency filtering stage of the

FBCSP technique, the temporal convolution component within

ECGencode is structured to capture both high-frequency and
low-frequency attributes from the input ECG signal. Visualisa-
tion of individual channels of this component reveals the vary-
ing length kernels behave as expected. As illustrated in Fig-
ure 10a, shorter kernels (i.e., Kernel 1) predominantly capture
high-frequency details, whereas longer kernels (i.e., Kernel 16)
emphasize the lower-frequency elements of the input ECG.

3.5.2. Interpretation of Spatial Convolution
The spatial convolution component in ECGencode utilises

its learned kernel weights to determine the significance of corre-
sponding input leads for generating the augmented leads. Each
kernel in this component, responsible for generating one of the
output augmented leads, consists of 12 weights, one for each in-
put lead. Due to the preceding lead-specific BN, these learned
weights directly indicate the extent of influence each lead has in
the creation of the augmented lead. Leads with weights close to
zero contribute minimally to the final augmented lead and thus
to the final prediction. Likewise, leads with weights that have
a larger absolute value contribute more to the final augmented
lead.

This intrinsic interpretation of the learned weights enables
a topographic visualisation, where the weights assigned to in-
dividual leads can be spatially mapped. This visualisation tech-
nique, illustrated in Figure 10c, can assist medical staff by high-
lighting which lead in the original 12-lead input signal contains
the most prominent information relevant to the diagnosis.

3.5.3. Utilisation of Conventional Visualisation Techniques
Conventional visualisation methodologies from the broader

domain of deep learning offer additional ways for interpret-
ing models which employ ECGencode. This includes gradient-
based class activation maps, such as GradCAM (Selvaraju et al.,
2020), GradCAM++ (Chattopadhay et al., 2018), ScoreCAM
(Wang et al., 2020), LayerCAM (Jiang et al., 2021), as well as
saliency maps, such as vanilla saliency (Simonyan et al., 2014)
and SmoothGrad (Smilkov et al., 2017). These techniques are
commonly used for ECG analysis models to provide heatmaps
that indicate critical regions influencing the model’s decisions
(Kim et al., 2022; Jahmunah et al., 2022; Tohyama et al., 2023).

Given ECGencode’s custom layers are disabled during in-
ference, these existing techniques can be applied directly to
models incorporating ECGencode. An application of both a
SmoothGrad saliency map and a Grad-Cam++ class activation
map for the same segments on a correctly classified AFib ECG
by the first ECGencode model, is depicted in Figure 10b. The
heatmaps generated by these methods highlight the P-wave re-
gions in the ECG signal, an area recognised to exhibit dimin-
ished or absent activity in AFib-positive patients (Goodacre and
Irons, 2002).

4. Evaluation and Results

This section evaluates ECGencode’s versatility, computa-
tional efficiency, and performance across four distinct ECG clas-
sification tasks, employing ECGencode as a feature encoder in

13

two separate deep learning models. Both configurations are as-
sessed using open-source data sets and benchmarked against
SOTA techniques, highlighting ECGencode’s potential in real-
world applications.

4.1. Available Data Sets

ECGencode is evaluated using the PTB-XL (Wagner et al.,
2020, 2022; Goldberger et al., 2000) and CODE-15% (Ribeiro
et al., 2020, 2021; Lima et al., 2021) open-source data sets.
These data sets are among the most extensive in the public do-
main, offering a reliable platform for assessing generalisability
and benchmarking against SOTA methodologies. While they
provide valuable insights into real-world performance, it should
be noted that they cannot fully replicate the breadth of data typ-
ically available in private clinical settings.

Both data sets are utilised in their original formats, except
for per-device normalisation and the upsampling of CODE-15%
to 500Hz to align with PTB-XL. These preprocessing steps aim
to improve the models’ robustness and transferability, mitigat-
ing device-specific biases and enhancing generalisability across
different ECG recording devices and data sets.

4.1.1. PTB-XL Data Set
The PTB-XL data set comprises 21,837 standardised 10-

second 12-lead ECG recordings (Wagner et al., 2020, 2022;
Goldberger et al., 2000). Sourced from 18,885 distinct patients
between October 1989 and June 1996, these recordings employ
various Schiller AG ECG devices and exhibit a data shape of
12 × 5,000 due to a 500Hz sampling rate. On average, 1.16
ECGs per patient are present in the data set.

Being a multi-label data set, PTB-XL assigns one or more
labels to each ECG, reflecting the large variety of cardiac con-
ditions and possible combinations of them found in real-world
data. The PTB-XL data set features 71 diverse labels, which are
different types of diagnostic statements, ranging from rhythm
to form statements, with a distribution that approximates actual
clinical prevalence rates. For instance, it encompasses 9,528
normal ECGs (43.63%), contrasted with rare diagnostic cate-
gories like second-degree AV block which only has 14 samples
(0.06%). The median age of the data set’s patients is 62, with
an interquartile range of 22. Additional metadata, such as the
ECG device and recording date, are also available.

For a comprehensive overview and download details of the
PTB-XL data set, refer to the work by Wagner et al. (2020).
Benchmarking information and performance metrics are avail-
able in the work of Strodthoff et al. (2021).

4.1.2. CODE-15% Data Set
The CODE-15% data set contains 345,779 12-lead ECG ex-

ams, each lasting either 7 or 10 seconds (Ribeiro et al., 2020,
2021; Lima et al., 2021). These exams were collected between
2010 and 2016 by the Telehealth Network of Minas Gerais
(TNMG) in Brazil and originate from 233,770 distinct patients.
Representing a stratified 15% subset of the larger, non-publicly
available CODE data set, CODE-15% averages 1.48 ECGs per
patient. To have a uniform data shape of 12 × 4096 for both 7

and 10-second ECGs in the CODE-15% data set, zero padding
is pre-applied to the 400Hz signals. For compatibility with
PTB-XL, this zero padding is removed from the CODE-15%
ECGs such that they can be upsampled to 500Hz and re-padded
in case of the 7-second ECGs to have a final, shared with PTB-
XL, data shape of 12 × 5,000.

CODE-15% includes seven diagnostic labels such as first-
degree AV block and AFib. In contrast to PTB-XL, this data set
is less rich in metadata; it lacks ECG device details, necessitat-
ing a generalised normalisation process and only the age of the
patient at the time of recording is available, limiting the ability
to determine the exact recording date.

For further insights into the CODE-15% data set, consult
the works by Ribeiro et al. (2020, 2021) and Lima et al. (2021).

4.2. Experimental Setup and Evaluation Metrics

To assess the performance of the ECGencode feature en-
coder whilst demonstrating its intuitive model configuration pa-
rameterisation and versatility, two custom deep learning models
incorporating ECGencode have been constructed for four dis-
tinct ECG classification tasks. The first model prioritises com-
putational efficiency without loss of classification performance,
targeting three binary ECG classification tasks related to AFib
presence on the ECG. The second model features a more com-
plex architecture that supplements the ECGencode latent space
with Long Short-Term Memory (LSTM) units, designed for
multi-label ECG classification. This more complex ECGencode
model 2 aims to demonstrate how an extension to ECGencode
can be made using intuitive reasoning over the model configu-
ration parameters and latent space, whilst maintaining a low pa-
rameter count and SOTA matching performance. These models
undergo evaluation both within an isolated test partition of the
originating data set and on an entirely separate, previously un-
seen data set for the binary ECG classification tasks. This pro-
vides a comprehensive performance assessment through multi-
ple reported metrics.

4.2.1. ECGencode Model 1: Binary ECG Classification

Prediction AFib NSR

Figure 11: Temporal alignment of all ECGs from an AFib-positive patient cate-
gorised as prediction, AFib, and NSR ECGs. Prediction ECGs precede the first
AFib-labelled ECG, meaning the patient was not known to be AFib positive
yet. NSR ECGs follow the first AFib-labelled ECG but are not labelled as AFib
themselves.

ECGencode model 1, illustrated in Figure 1 and detailed
in Section 3.1, is optimised for binary ECG classification with
a focus on achieving high computational efficiency, measured
both in terms of parameters and FLOPs, without loss of classifi-
cation performance. The configuration of model 1 is as follows:

14

• Temporal convolution: Kernels of temporal length 16,
64, 256 and 1,024 spanning 0.03, 0.1, 0.5, and 2 sec-
onds, respectively. Striding of eight for significant tem-
poral resolution and FLOPs reduction. Each kernel has 4
output channels, totalling a computationally manageable
16.

• Spatial convolution: 4 augmented leads for significant
temporal downscaling, based on the optimal found four
number of leads by Lai et al. (2021).

• Feature convolution 1: Depthwise kernel of temporal
length 32 with 4 pointwise output channels. A depth mul-
tiplier of 1 and a stride of 8 is used.

• Feature convolution 2: Depthwise kernel of temporal
length 8 with 4 pointwise output channels. Depth multi-
plier of 1 and a stride of 2. These parameters were chosen
to obtain a compact output latent space.

• ECGencode output shape: 4 × 40 × 4.

• ECGencode parameters: 6,960.

• Extension: Simple 1D flatten.

• Classification: softmax activated dense layer of 2 units.

• Total model parameters: 8,242.

• Total model FLOPs: ± 83M.

ECGencode model 1 is trained using the CODE-15% data
set, partitioned into a training (80%), validation (10%), and test
(10%) set through a stratified strategy, ensuring that the label
distribution is maintained and no patients overlap exists be-
tween the sets. All ECGs from a patient with at least one AFib-
positive ECG are considered a positive sample, this includes the
prediction, AFib and NSR ECGs as depicted in Figure 11. All
ECGs from patients without any AFib association are consid-
ered negative samples, which is inspired by the experimental
setup of Attia et al. (2019b) for similar experiments. It is im-
portant to note that due to the limited metadata of CODE-15%,
which doesn’t include the exact recording date of an ECG, the
temporal ordering of ECGs from a patient is based on the pa-
tient’s age. Thus, for an ECG to be considered a prediction
sample of AFib, the patient’s age must be lower than on their
first AFib-diagnosed ECG. In situations where the first AFib-
diagnosed ECG is close to their birthday (e.g., one day before
their birthday), this means that an ECG has to be taken at least
1 year before the first AFib-diagnosed ECG to be considered
as a prediction sample. Given this already severely limits the
amount of prediction samples, no upper limit for age difference
to be considered a prediction sample is set. This means the pre-
diction samples have a long time horizon, making the prediction
evaluation task a very difficult one. Likewise, an ECG without
AFib diagnosis is considered an NSR sample when the patient’s
age is identical or higher than on their first AFib-diagnosed
ECG. This means that some samples considered NSR in the
NSR test set could be recorded before the first AFib-diagnosed

ECG, as ordering them in time is impossible when the patient’s
age is identical. In this sense, the NSR detection test task likely
contains what is intuitively considered ”prediction samples”,
but due to the limited metadata can’t be labelled as such.

For the training set, this corresponds to 7,865 positive sam-
ples, of which only 1,677 are NSR samples and 983 are pre-
diction samples, contrasted to the large set of negatives which
consists of 271,643 ECGs. For the validation set this results in
407 NSR samples and 238 prediction samples in the positive set
of 1,432 samples and 29,547 negative samples. The model se-
lected for further use is the one obtained at the epoch where the
validation sensitivity is at its highest. This choice is based on
wanting to train a model that correctly predicts as many of the
positive samples given the heavy class imbalance. Training is
conducted for 2,500 epochs using an AdamW optimizer and an
alpha-balanced categorical focal cross-entropy loss function to
take into account the heavy class imbalance of the training data,
typical for ECG analysis tasks (Loshchilov and Hutter, 2019;
Lin et al., 2020; Romdhane et al., 2020). The thresholds used
for converting the continuous values to labels are optimised for
achieving the highest validation F1 score.

4.2.2. ECGencode Model 2: Multi-Label ECG Classification
To demonstrate ECGencode’s intuitive model configuration,

versatility, and ECG-structured latent space, a second ECGen-
code model targeting multi-label classification is proposed. EC-
Gencode model 2, visualised in Figure 12, has been designed
for classifying 71 class labels in a multi-label task and is an
extension of the binary model proposed in Section 4.2.1. The
configuration of ECGencode has been modified to boast more
complex internal and external representations and an LSTM ex-
tension has been added following the guidelines discussed in
Section 3.4. These modifications have been done by reason-
ing over the ECGencode configuration parameters and gener-
ated latent space directly, without optimising the model archi-
tecture through computationally expensive methods. The pro-
posed LSTM extension demonstrates the possibility of sequen-
tial modelling using ECGencode as elaborated in Section 3.4.
The resulting CNN-LSTM architecture is thus a more complex
model compared to the first ECGencode model but one that
is capable of achieving performance on par with the PTB-XL
benchmark models proposed by Strodthoff et al. (2021), as dis-
cussed in Section 4.4. The exact configuration of ECGencode
model 2 as compared to ECGencode model 1 is given below:

• Temporal convolution: Kernels of temporal length 16,
64, 256 and 1,024. Striding of eight. Each kernel has
4 output channels, totalling 16. This is unchanged com-
pared to ECGencode model 1 to maintain a high temporal
reduction early on, helping save significant FLOPs later
in the model.

• Spatial convolution: 5 augmented leads, a slight increase
from ECGencode model 1’s four augmented leads, pre-
serving a higher spatial resolution.

• Feature convolution 1: Depthwise kernel of temporal
length 16 with 16 pointwise output channels. Depth mul-

15

Input data
12 x 5,000 x 1

ECGencode
12 x 5,000 x 1 -> 5 x 79 x 32

Extension(s)
5 x 79 x 32 -> 128

Output
128 -> 71

ECG

Input shape: 12 x 5,000

Number of params: 0
Output shape: 12 x 5,000 x 0

Temporal
Convolution

Kernels: 16, 64, 256, 1,024
Output channels: 4, 4, 4, 4
Striding: 8

Number of params: 5,440
Output shape: 12 x 625 x 16

2D Flatten

New dimensions:
timepoints x
(leads * channels)

Nr of params: 0
Output shape: 79 x 160

Sigmoid
classifier

Dense layers: 1
Dense units: 71
Activations: Sigmoid

Number of params: 9,159
Output Shape: 71

Spatial
Convolution

Augmented leads: 5

Number of params: 1,008
Output shape: 5 x 625 x 16

Feature
Convolution 1

Kernel | output channels: 16 | 16
Depth multiplier | stride: 1 | 4

Number of params: 576
Output shape: 5 x 157 x 16

Feature
Convolution 2

Kernel | output channels: 16 | 32
Depth multiplier | stride: 2 | 2

Number of params: 1,600
Output shape: 5 x 79 x 32

Bi-LSTM

Units: 64
Return sequence: False

Nr of params: 115,200
Output shape: 128

Batch Norm

Nr of params: 512
Output shape: 128

ECGencode model 2
Task: Multi-label classification

Focus: Demonstrate flexibility

Proposed extension: Bi-LSTM

Total parameters: 133,495

Figure 12: A high-level overview of ECGencode model 2 used for multi-label ECG classification of 71 classes. This model, and the ECGencode configuration it
uses, focus on demonstrating ECGencode’s flexibility and extendibility. The 2D input consists of a standard 10-second 12-lead ECG sampled at 500Hz, represented
as a 12 × 5,000 matrix. ECGencode outputs a 3D latent space with dimensions 5 × 79 × 32 which is flattened into 2D by merging the channel and lead dimensions.
A bi-directional LSTM layer with 64 units in each direction is used to create a CNN-LSTM model. A fully connected layer with sigmoid activation accomplishes
the multi-label ECG classification. ECGencode Model 2 has 133,495 parameters in total.

tiplier of 1 and a stride of 4. This uses a lower striding
compared to ECGencode model 1, preserving a higher
temporal resolution, and more channels for a more com-
plex internal representation.

• Feature convolution 2: Depthwise kernel of temporal
length 16 with 32 pointwise output channels. Depth mul-
tiplier of 2 and a stride of 2. This uses a lower striding
compared to ECGencode model 1, preserving a higher
temporal resolution, and more channels for a more com-
plex external representation.

• ECGencode output shape: 5 × 79 × 32, contrasted to
ECGencode model 1’s more compact latent space of 4 ×
40 × 4.

• ECGencode parameters: 8,624, contrasted to ECGen-
code model 1’s 6,960.

• Extension: 2D flatten followed by a bi-directional LSTM
layer with 64 units per direction and finally a channel-
based BN layer.

• Classification: sigmoid activated dense layer of 71 units.

• Total model parameters: 133,495, contrasted to EC-
Gencode model 1’s 8,242.

ECGencode model 2 is trained using the PTB-XL data set
for classifying all of the 71 diagnostic statements available. The
PTB-XL data set is partitioned into training (folds 1 − 8), val-
idation (fold 9), and testing (fold 10) sets, following an iden-
tical setup to the one proposed by Strodthoff et al. (2021) in
their PTB-XL benchmark paper. Following epoch-based ex-
perimentation using the training and validation sets, the model

undergoes a final training phase for 1, 500 epochs using both
the training and validation set as training data. An AdamW op-
timizer and an alpha-balanced binary focal cross-entropy loss
function are utilised in this training phase (Lin et al., 2020;
Romdhane et al., 2020; Loshchilov and Hutter, 2019). The
thresholds used for converting the continuous values to labels
are optimised for achieving the highest validation F1 score.

4.2.3. Evaluation Metrics
To evaluate the performance of the devised models, multiple

evaluation metrics are reported. These metrics are selected to
account for the heavy class imbalance in ECG data sets. Conse-
quently, conventional metrics such as accuracy are consciously
excluded to preclude misleadingly high scores from naive mod-
els that predict solely the majority class.

Equation 9 defines the Area Under the Receiver Operat-
ing Characteristic Curve (AUC), which serves to quantify the
model’s capacity for discriminating between positive and nega-
tive instances, independent of the threshold used for converting
the continuous values to labels. It is defined in terms of the
True Positive Rate (TPR) and the False Positive Rate (FPR).
A high AUC generally means multiple good thresholds exist
for achieving both a good TPR as well as a good FPR, and the
threshold can be adjusted in favour of any of these rates. For
the multi-label task, a macro-averaged AUC is reported.

AUC =
∫ 1

x=0
TPR(FPR−1(x)), dx (9)

Besides AUC, some threshold dependent metrics, based on
the number of True Positives (TP), False Positives (FP), True
Negatives (TN) and False Negatives (FN) are also reported. The
precision metric, specified in Equation 10, denotes the positive

16

predictive value, the proportion of true positives over all of the
positive predictions. The sensitivity metric, specified in Equa-
tion 11, denotes the recall, the proportion of true positives over
all the positive samples. As precision and sensitivity are cor-
related to each other, and an improvement in one metric often
causes a reduction in the other, the F1 score is often consid-
ered to summarise these two metrics. The F1 score, defined
in Equation 12, serves as a harmonic mean of precision and
sensitivity. As these threshold-dependent metrics focus on the
positive samples, the specificity metric is also provided, which
denotes the true negative rate, as depicted in Equation 13. For
the multi-label task, these metrics are macro-averaged across
all 71 classes.

Precision =
TP

TP + FP
(10)

Sensitivity =
TP

TP + FN
(11)

F1 Score = 2 ×
Precision × Sensitivity
Precision + Sensitivity

(12)

Specificity =
TN

TN + FP
(13)

Specific to the multi-label ECG classification task, the Ham-
ming loss is also reported. As illustrated in Equation 14 where
yi, j is the target, ŷi, j is the model output, N is the total number
of samples and L is the total number of labels, this metric quan-
tifies the fraction of erroneously predicted labels to the total
number of labels.

Hamming Loss =
1

N · L

N∑
i=1

L∑
j=1

xor(yi, j, ŷi, j) (14)

These metrics are presented as point estimates derived from
the complete test set, complemented by a 95% confidence in-
terval for the AUC and F1 metric. This confidence interval is
calculated through empirical bootstrapping on the test set, en-
compassing 10,000 iterations. The bootstrapping methodology
employed here involves sampling the test set with replacement,
creating a distinct test set of the same size for each of the 10,000
iterations. This approach is consistent with the one used in
the PTB-XL benchmarking paper by Strodthoff et al. (2021),
enabling a direct comparison with their findings. Under this
framework, a model’s better performance for a specific metric
is deemed statistically significant if the confidence intervals for
the point estimates do not overlap.

4.3. Binary ECG Classification Results
The methodology employed for training ECGencode model

1 is elaborated in Section 4.2.1. Besides ECGencode model 1,
the model by Attia et al. (2019b), now referred to as Attia’s
model, and the most compact model by Phukan et al. (2023)
for 10-second ECG classification, now referred to as AFibri-
Net 3, were trained using the same methodology and serve as
benchmark models. Attia’s model, inspired by a ResNet-9 ar-
chitecture (He et al., 2016), is chosen as benchmark model as

it has received varied levels of clinical validation for its SOTA
performance in NSR AFib detection and new-onset AFib pre-
diction, among other ECG classification tasks (Gruwez et al.,
2023; Attia et al., 2019b; Raghunath et al., 2021; Christopou-
los et al., 2020; Attia et al., 2019a; Noseworthy et al., 2020).
AFibri-Net 3 was chosen as it was recently proposed as a com-
putationally efficient model for AFib detection, suitable for use
on edge devices. Given the limited available metadata, tradi-
tional AFib risk scores such as CHARGE-AF by Alonso et al.
(2013) were not applicable for comparison.

Evaluation of these binary models encompasses three tasks
with the first being the detection of AFib-related ECGs (Re-
lated - all ECGs from AFib-positive patients are considered
positive). This corresponds to the task and labelling scheme
used for training ECGencode model 1. Besides this task, two
more complex sub-tasks are also evaluated: NSR AFib detec-
tion (NSR) and new-onset AFib prediction (Prediction). These
sub-tasks only use the NSR or Prediction ECGs from AFib-
positive patients, as illustrated in Figure 11, in the positive set
and omit the other ECGs from AFib-positive patients from the
test set. The first task was chosen to demonstrate how well the
model learned the training task, whereas the other two tasks
represent detecting a subgroup of the positives which can not
be detected through traditional methods, highlighting the bene-
fit of DL and its use as risk prediction and screening selection
tool (Attia et al., 2019b; Christopoulos et al., 2020; Raghunath
et al., 2021; Gruwez et al., 2023). As noted in Section 4.2.1,
the limited metadata in the used data sets and the choice for
no fixed maximum time-to-onset delta for the prediction sam-
ples result in the NSR detection and new-onset prediction tasks
being very hard tasks.

Given the limited number of positives, 1,973 for the first
task, 639 for NSR detection and 293 for new-onset prediction,
and a high imbalance towards negatives (33,319 for all) in the
CODE-15% test split, the risk of learnable data set biases is
not negligible. As such, additional assessments are carried out
on the previously unseen, complete PTB-XL data set (Wagner
et al., 2020, 2022; Goldberger et al., 2000). Table 1 summarises
the found evaluation metrics for these models on these data sets.
Given the explained relation between sensitivity, specificity and
precision, in Section 4.2, the confidence intervals and signifi-
cant differences are only highlighted for the AUC and F1 met-
ric.

Table 1 reveals several insights. First, the evaluation results
show that ECGencode achieves the highest AUC and sensitiv-
ity across all tasks, demonstrating its power to match or surpass
SOTA performance. This is especially notable considering the
used sensitivity-focused model selection procedure, where the
highest validation sensitivity models were used for collecting
the results. Second, Attia’s model significantly outperforms the
other models in F1 score for the CODE-15% test set of the ”re-
lated” task, which had the same labelling procedure as the train
set, but is significantly worse than ECGencode model 1 on the
PTB-XL dataset. This suggests a possible data bias is learned
rather than medical properties of the task in the Attia model,
further highlighting to the effectiveness of ECGencode’s novel
Spatial Gaussian Noise regularisation for improved generalisa-

17

tion results. Third, AFibri-Net 3 consistently performs statis-
tically worse in both AUC and F1 for various tasks, indicat-
ing its computational efficiency sacrifices performance. Over-
all, ECGencode model 1’s performance, enhanced by the novel
Spatial Gaussian Noise Regularisation technique, suggests it is
highly effective for these binary ECG analysis tasks while being
computationally far more efficient when compared to the SOTA
model, as further detailed in Section 4.5.

While this exact evaluation setup has not been considered in
other works, taking into account the discussed metadata restric-
tions and test set configuration, the CODE-15% NSR test set
is comparable to the NSR AFib detection setup of Attia et al.
(2019b) and the short-term prediction setup of Raghunath et al.
(2021), which limits the time-to-onset delta to a maximum of
one year. This makes an indirect comparison to these works
possible. Raghunath et al. (2021) report a sensitivity of 0.69
and a number needed to screen (NNS) of 9 to find one new
case of AFib. This NNS translates to a precision of 0.11 (1

9).
Thus, the (non-reported) F1 score of their model is calculated
as 2 × 0.69×0.11

0.69+0.11 = 0.1897. In contrast, the F1 score for the com-
parable NSR CODE-15% setting of this work is 0.2951 for EC-
Gencode Model 1, which is a reasonable difference given the
slightly more challenging evaluation task of Raghunath et al.
(2021). Similarly, Attia et al. (2019b) report a higher F1 score
of 0.392, but this is expected given their easier-to-classify test
set, which includes only true NSR samples. Their model (At-
tia), when trained and evaluated under the experimental setup
of this work, results in a similar F1 score to ECGencode Model
1. Additionally, the more challenging prediction task and cross-
clinic validation on the PTB-XL test set show expected perfor-
mance results in comparison. It should be noted that a different
model threshold optimisation technique could be used to favour
a specific metric other than F1, as is currently the case.

4.4. Multi-Label ECG Classification Results
The training approach for the ECGencode model 2 is de-

tailed in Section 4.2.2. The evaluation results, shown in Ta-
ble 2, compare the performance of ECGencode model 2 with
models from the PTB-XL benchmark study by Strodthoff et al.
(2021), which uses the same evaluation framework. The xres-
net1d101 model was selected for comparison due to its highest
AUC value in the benchmark. Additionally, the lstm bidir is
included for its use of Bidirectional LSTM layers, similar to
ECGencode model 2. For the same reasons as Strodthoff et al.
(2021), the Wavelet+NN model, which employs manual feature
extraction, is reported to provide contrast with more conven-
tional, non-DL, methods.

While the PTB-XL benchmark study reports only the AUC
metric and its confidence interval, ECGencode model 2’s re-
sults are expanded with the additional metrics that were dis-
cussed in Section 4.2.3. Considering the overlapping AUC con-
fidence intervals among the top-performing models, including
ECGencode model 2, no significant differences were observed.
However, when compared to the more traditional Wavelet+NN
model, a significant difference in performance is seen. This
demonstrates the effectiveness of the ECGencode model 2’s ar-
chitecture, which was developed simply through intuitive con-

figuration and latent space analysis, yielding a satisfactory model
without extensive tuning. Moreover, as outlined in Section 4.5,
ECGencode model 2 operates with considerably fewer parame-
ters compared to these other models.

4.5. Computational Efficiency Analysis

One of the main advantages of using ECGencode as a deep
learning feature encoder resides in its ability to transform com-
plex ECG inputs into a compact latent space with remarkable
computational efficiency. As shown in Sections 4.3 and 4.4,
this latent space serves as the foundation for ECG classifica-
tion models that are competitive with SOTA alternatives in both
binary and multi-label ECG classification scenarios. This sec-
tion aims to quantify the computational efficiency in terms of
FLOPs and model parameters. The computational metrics are
calculated using the formulas delineated in Section 3.3 and fur-
ther validated by the keras-FLOPs library1.

4.5.1. Computational Efficiency of Binary ECG classification
models

Table 3 presents a comparative analysis of the computa-
tional demands for the evaluated binary ECG classification mod-
els in terms of the number of parameters and FLOPs. ECGen-
code model 1 stands out for its efficiency, requiring only 8,242
parameters, a fraction (3.79%) of what is needed by the Attia
model. It also operates with approximately 83 million FLOPs,
just 12.39% of the Attia model’s requirements. This reduc-
tion in parameters, along with the introduction of Spatial Gaus-
sian Noise Regularisation, helps prevent overfitting, supporting
the better-found model’s generalisation capabilities compared
to Attia’s model, as discussed in Section 4.3.

The smaller number of parameters, offering lower storage
requirements and reduced risk of overfitting, combined with the
manageable number of FLOPs, offering lower CPU demands,
make ECGencode model 1 well-suited for use on edge devices
with limited computational resources. Although AFibri-Net 3
has the lowest FLOPs count, it does so at the cost of signifi-
cantly poorer classification performance, as detailed in Section
4.3. Its parameter count, while less than the Attia model, is still
23 times higher than ECGencode model 1. Notably, a signifi-
cant portion of the FLOPs in ECGencode model 1 is due to the
large kernel in the initial convolution layer, which is responsible
for nearly 80M of the 83M FLOPs. Optimising this layer, es-
pecially by reducing the kernel sizes, could drastically decrease
the FLOPs if desired, although the risk of significantly worse
performance, like the AFibri-Net 3 model, should be consid-
ered.

4.5.2. Computational Efficiency of Multi-label ECG classifica-
tion models

Due to the lack of publicly available libraries that support
FLOPs calculations for LSTM layers and complex models such
as those in the PTB-XL benchmark paper (Strodthoff et al.,

1https://pypi.org/project/keras-FLOPs/

18

https://pypi.org/project/keras-FLOPs/

Task Data set Model AUC F1 Sensitivity Specificity Precision

Related CODE-15% ECGencode M1 0.9127 ± 0.0079 0.6052 ± 0.0185* 0.5844 0.9795 0.6277
Attia 0.9007 ± 0.0090 0.6627 ± 0.0188 0.5580 0.9925 0.8156
AFibri-Net 3 0.8558 ± 0.0092 * 0.4158 ± 0.0180* 0.4891 0.9489 0.3616

PTB-XL ECGencode M1 0.9430 ± 0.0070 0.6372 ± 0.0207 0.5198 0.9900 0.8232
Attia 0.9137 ± 0.0083* 0.5028 ± 0.0245* 0.3518 0,9958 0.8811
AFibri-Net 3 0.8442 ± 0.0096* 0.2522 ± 0.0238* 0.1608 0.9898 0.5842

NSR CODE-15% ECGencode M1 0.8636 ± 0.0166 0.2951 ± 0.0298 0.3584 0.9795 0.2508
Attia 0.8355 ± 0.0187 0.3272 ± 0.0381 0.2520 0.9945 0.4667
AFibri-Net 3 0.7993 ± 0.0184* 0.1893 ± 0.0255* 0.2457 0.9741 0.1539

PTB-XL ECGencode M1 0.7367 ± 0.0372 0.0623 ± 0.0350 0.0694 0.9900 0.0566
Attia 0.6614 ± 0.0421 0.0253 ± 0.0309 0.0173 0.9970 0.0469
AFibri-Net 3 0.6942 ± 0.0414 0.0753 ± 0.0497 0.0520 0.9972 0.1364

Prediction CODE-15% ECGencode M1 0.7652 ± 0.0301 0.0897 ± 0.0270 0.1331 0.9839 0.0676
Attia 0.7408 ± 0.0301 0.0734 ± 0.0308 0.0683 0.9930 0.0794
AFibri-Net 3 0.7238 ± 0.0296 0.0445 ± 0.0222 0.0546 0.9877 0.0376

PTB-XL ECGencode M1 0.7546 ± 0.0561 0.0756 ± 0.0437 0.1058 0.9912 0.0588
Attia 0.6599 ± 0.0501 0.0423 ± 0.0442 0.0385 0.9960 0.0471
AFibri-Net 3 0.7195 ± 0.0460 0.0282 ± 0.0433 0.0192 0.9982 0.0526

Table 1: Summary of binary ECG classification performance for detection of AFib-related ECGs (Related - all ECGs from AFib-positive patients are considered
positive), NSR AFib detection (NSR), and new-onset AFib prediction (Prediction) tasks. Models were trained on the CODE-15% train set, considering all ECGs
from AFib-positive patients as positive samples. Evaluations were performed on the CODE-15% test set and the full PTB-XL data set to examine generalisation.
Metrics reported include AUC, F1 score, sensitivity, specificity, and precision, with point estimates for the test sets and confidence intervals for AUC and F1 metrics
derived from 10,000 bootstrapping iterations. F1, Sensitivity, specificity, and precision are based on thresholds optimised for the highest CODE-15% validation set
F1 score. Bold indicates top scores per metric and dataset whilst asterisks (*) mark scores where the AUC and F1’s confidence intervals do not overlap with the
highest scores, indicating significant differences.

2021), this computational efficiency analysis is restricted to pa-
rameter counts. Table 4 summarises these parameter require-
ments of the second ECGencode model in contrast to the xres-
net1d101 and lstm bidir models from the PTB-XL benchmark
paper (Strodthoff et al., 2021). Despite incorporating a com-
putationally demanding LSTM layer, the second ECGencode
model necessitates only 7.13% of the parameters as compared
to the xresnet1d101 model. When compared to the lstm bidir
model, the parameter count for the second ECGencode drops
to only 5.73%. This significant reduction in parameters is at-
tributed to the LSTM layer requiring less complexity as its in-
put complexity is already significantly reduced by ECGencode.
Given the Wavelet+NN model employs a hybrid approach com-
bining wavelet transforms with neural networks, a direct param-
eter count comparison is not applicable.

5. Discussion

SOTA models in ECG analysis face various training and in-
ference challenges due to their large parameter counts and high
computational demands. These challenges are particularly pro-
nounced in environments with limited resources, such as med-
ical edge devices, limiting their practical deployment. While
some task-specific models have been developed to significantly
reduce computational efficiency and allow for inference on edge
devices, they are prone to significantly worse performance, as

shown for the AFibri-Net 3 model in this work. These task-
specific models also lack the versatility required for adopting
them to other tasks and hardware settings.

Moreover, whilst some complex models allow for adjusting
model complexity, such as controlling the amount of residual
blocks in ResNets, this process is not straightforward due to the
absence of an intuitive relation between the model configura-
tion parameters and the specific ECG analysis tasks. This ei-
ther results in the need for a computationally expensive optimi-
sation process, which increases the risk of overfitting and bias
learning, or more often, the use of default and overly complex
configurations. These deep models also offer limited intrinsic
interpretability in their learned parameters, requiring post hoc
visualisations for some basic model interpretability.

This work proposes ECGencode as a solution to these lim-
itations, offering a compact and computationally efficient deep
learning feature encoder specifically designed to be used as a
building block for DL ECG analysis models. Inspired by the
FBCSP approach, ECGencode enables intuitive model configu-
ration and provides some intrinsic interpretability of model pa-
rameters and decisions, as shown in Figure 10 and discussed
in Section 3.5. ECGencode also maintains the ECG structure
within its 2D latent space representation which allows for in-
tuitive complexity configuration and lends itself to be used in
various model architectures. Minimal computational load for
the feature extraction is guaranteed through the use of depth-

19

Model AUC F1 Sensitivity Specificity Precission Hamming
ECGencode M2 0.9181 ± 0.0097 0.3265 ± 0.0214 0.3555 0.9779 0.3484 0.0276
xresnet1d101 0.9250 ± 0.0070 - - - - -
lstm bidir 0.9140 ± 0.0080 - - - - -
Wavelet+NN 0.8490 ± 0.0130* - - - - -

Table 2: Performance of various multi-label ECG classification models on identifying all 71 diagnostic labels from the PTB-XL test set (fold 10). ECGencode
model 2 underwent training across PTB-XL’s folds 1-9 for 1, 500 epochs. Metrics reported include AUC, Hamming loss and macro-averaged F1 score, sensitivity,
specificity, and precision, with point estimates for the test sets and confidence intervals for AUC and F1 metrics derived from 10,000 bootstrapping iterations.
Thresholds for calculating Hamming loss, F1, sensitivity, specificity, and precision were obtained through optimisation for the highest F1 score on the validation
set (fold 9). Bold indicates the top AUC score, and asterisks (*) denote significantly different scores based on non-overlapping confidence intervals with the highest
AUC score. Benchmark models and their AUC values are sourced from the PTB-XL benchmark study by Strodthoff et al. (2021), which only reports AUC and their
confidence intervals.

Model Parameters FLOPs
ECGencode M1 8,242 (1x) ± 83M (1x)
Attia 217,350 (26.5x) ± 670M (8x)
AFibri-Net 3 191,106 (23x) ± 12M (.15x)

Table 3: Comparative analysis of computational efficiency for the evaluated
binary ECG classification models, highlighting ECGencode model 1’s minimal
parameter count and manageable FLOPs. The relative size of both parameter
count and FLOPs from the benchmark models compared to ECGencode is also
provided.

Model Parameters

ECGencode M2 133,495 (1x)
xresnet1d101 1,880,775 (14x)
lstm bidir 2,330,629 (17.5x)
Wavelet+NN - (-)

Table 4: Efficiency comparison of parameter counts among multi-label ECG
classification models, showcasing ECGencode model 2’s low parameter foot-
print amidst complex tasks. Relative parameter sizes for benchmark mod-
els are presented as multiples of ECGencode’s metrics. The ”Wavelet+NN”
model employs a hybrid approach combining wavelet transforms with neural
networks, making a direct parameter count comparison not applicable.

wise and depthwise separable convolutions in the compact EC-
Gencode architecture. Additionally, ECGencode’s novel Spa-
tial Gaussian Noise regularisation technique enhances generali-
sation performance, positioning it as a versatile tool for various
ECG analysis tasks without the trade-offs commonly associated
with models optimised for computational efficiency.

These claims in favour of ECGencode are validated by in-
corporating it into two distinct ECGencode models. ECGen-
code model 1 is configured for a low parameter and FLOPs
count while achieving performance on par with SOTA mod-
els for three distinct binary ECG classification tasks: detect-
ing AFib-related patients, NSR AFib detection, and new-onset
AFib prediction. The results from Section 4.3 demonstrate EC-
Gencode power of matching or even outperforming the com-
plex SOTA model by Attia et al. (2019b) whilst significantly
outperforming the computationally efficient AFibri-Net 3 model
by Phukan et al. (2023). A computational efficiency analysis of
the trainable parameters and FLOPs revealed a tenfold saving
in FLOPs and over 20 times saving in parameters compared
to the model by Attia et al. (2019b). When compared to the

AFibri-Net 3 model by Phukan et al. (2023), the trainable pa-
rameters remained significantly reduced, but the FLOPs count
was higher. It was highlighted this is due to the contributions of
the large kernels in the temporal filter of ECGencode and that it
is possible to adjust this configuration to match the AFibri-Net
3 FLOPs count, although this could result in sub-par perfor-
mance, like the AFibri-Net 3 model. A preliminary intrinsic
interpretation of the temporal and spatial filters from ECGen-
code reveals they perform as expected, and common post hoc
visualisation tools highlight the model predictions are based on
areas of the ECG known to be representative of the task.

ECGencode model 2 showcases that a complex model in-
corporating ECGencode can be built through intuitive reason-
ing of the model configuration and 2D latent space represen-
tation of ECGencode. In particular, ECGencode model 2 is
a CNN-LSTM model which performs on par with the bench-
mark for PTB-XL multi-label classification of 71 classes with-
out requiring complex configuration or optimisation. Addition-
ally, even with this complex LSTM functionality added, it still
boasts a significant reduction in model parameters compared to
the benchmark models.

6. Conclusion

This work introduced ECGencode, an innovative deep learn-
ing feature encoder designed for computationally efficient ex-
traction of compact and informative feature vectors from raw
ECG data. ECGencode tackles the challenges found in the
complex, resource-intensive deep learning models prevalent in
ECG signal analysis through various ECG-specific optimisa-
tions. First, ECGencode is an ECG-specific, expert-inspired
and compact architecture, based on the FBCSP method. This,
in combination with a novel Spatial Gaussian Noise layer for
regularisation across both lead and channel dimensions, results
in SOTA matching performance across various ECG analysis
tasks. Secondly, ECGencode boasts an over tenfold reduction
in FLOPs when compared to SOTA performing models in these
tasks. This makes ECGencode models particularly suitable for
inference on resource-constraint medical edge devices and pro-
vides them with favourable training behaviour. Thirdly, EC-
Gencode’s architectural parameters provide an intuitive rela-
tion with the ECG analysis task and its latent space retains the
familiar 2D ECG structure. This enables easy configuration

20

of the feature encoder for various ECG analysis model archi-
tectures. Lastly, as a compact architecture with minimal pa-
rameters based on the FBCSP approach, ECGencode lends it-
self to intrinsic learned parameter interpretations and integrates
effectively with existing post hoc model visualisations. The
temporal component of ECGencode can be visualized to con-
firm both high-frequency and low-frequency alternations are
derived, while the learned kernel weights of the spatial com-
ponent allow for a topographic visualisation of the input lead
importance in generating augmented leads. Post hoc model vi-
sualisation techniques, such as gradient-based class activation
maps and saliency maps, highlight the P-wave focus for pos-
itive AFib predictions. Although these preliminary visualisa-
tions are promising, additional medical research is required for
comprehensive validation.

More specifically, in binary ECG classification tasks like
AFib detection during NSR and pre-onset prediction, ECGen-
code model 1 efficiently operates with only 3.79% of the param-
eters and 12.39% of the FLOPs required by the SOTA model of
Attia et al. (2019b), while delivering comparable, or even im-
proved, performance. For multi-label ECG classification of 71
diagnostic statements, the discussed ECGencode model 2 with
added LSTM functionality matched the top PTB-XL bench-
mark models (Strodthoff et al., 2021) in performance while us-
ing less than a tenth of the parameters.

Whilst the experiments from this work validate the claimed
benefits of ECGencode, and the efficient ECGencode model 1
can prove valuable as an AFib risk predictor and screening se-
lection tool for use on medical edge devices, ECGencode can
prove even more valuable in future work. One such research
direction includes pre-training the feature encoder through self-
supervised learning for learning general ECG features. This
general feature encoder can then serve as a robust initialisation
for tasks with such limited data that traditional training is not
possible. More interesting studies can be done on the intrinsic
model interpretation techniques ECGencode offers, by incor-
porating them into a live timeline scrubbing tool validating its
relevance by medical clinicians, and potentially revealing new
medical insights. Furthermore, ECGencode model 1 results,
with the best AUC and sensitivity for all tasks, suggest it can
be optimised to significantly beat SOTA performance in these
or other tasks whilst continuing to enjoy its other benefits. One
such optimisation may be the inclusion of known biomarkers
and traditionally derived features in the latent space of ECGen-
code to create a hybrid feature encoder.

In conclusion, ECGencode’s benefits make it a valuable ad-
dition to the ECG signal analysis domain, especially suited for
deployment in environments with constrained computational
resources or as an easy-to-configure feature encoder for bench-
mark models in new ECG analysis tasks. Given its versatility,
efficiency and interpretable model architecture, it positions it-
self as a fundamental feature extraction tool in the toolbox of
ECG analysis.

Declaration of Generative AI and AI-assisted technologies
in the writing process

During the preparation of this work the authors used Ope-
nAI’s ChatGPT (GPT-4) in order to improve readability and
language. After using this tool/service, the authors reviewed
and edited the content as needed and take full responsibility for
the content of the publication.

References

Abdullah, L. A. and Al-ani, M. S. (2020). CNN-LSTM Based
Model for ECG Arrhythmias and Myocardial Infarction
Classification. Advances in Science, Technology and En-
gineering Systems Journal, 5(5):601–606.

Alamatsaz, N., Tabatabaei, L., Yazdchi, M., Payan, H., Ala-
matsaz, N., and Nasimi, F. (2024). A lightweight hy-
brid cnn-lstm explainable model for ecg-based arrhyth-
mia detection. Biomedical Signal Processing and Control,
90:105884.

Alfaras, M., Soriano, M. C., and Ortı́n, S. (2019). A fast ma-
chine learning model for ecg-based heartbeat classification
and arrhythmia detection. Frontiers in Physics, 7.

Alonso, A., Krijthe, B. P., Aspelund, T., Stepas, K. A., Pencina,
M. J., Moser, C. B., Sinner, M. F., Sotoodehnia, N., Fontes,
J. D., Janssens, A. C. J. W., Kronmal, R. A., Magnani,
J. W., Witteman, J. C., Chamberlain, A. M., Lubitz, S. A.,
Schnabel, R. B., Agarwal, S. K., McManus, D. D., Elli-
nor, P. T., Larson, M. G., Burke, G. L., Launer, L. J., Hof-
man, A., Levy, D., Gottdiener, J. S., Kääb, S., Couper,
D., Harris, T. B., Soliman, E. Z., Stricker, B. H. C., Gud-
nason, V., Heckbert, S. R., and Benjamin, E. J. (2013).
Simple risk model predicts incidence of atrial fibrillation
in a racially and geographically diverse population: the
charge‐af consortium. Journal of the American
Heart Association, 2(2):e000102.

Ang, K. K., Chin, Z. Y., Zhang, H., and Guan, C. (2008). Fil-
ter bank common spatial pattern (fbcsp) in brain-computer
interface. In 2008 IEEE International Joint Conference
on Neural Networks (IEEE World Congress on Computa-
tional Intelligence), pages 2390–2397.

Attia, Z. I., Kapa, S., Lopez-Jimenez, F., McKie, P. M.,
Ladewig, D. J., Satam, G., Pellikka, P. A., Enriquez-
Sarano, M., Noseworthy, P. A., Munger, T. M., Asir-
vatham, S. J., Scott, C. G., Carter, R. E., and Friedman,
P. A. (2019a). Screening for cardiac contractile dysfunc-
tion using an artificial intelligence–enabled electrocardio-
gram. Nature Medicine, 25(1):70–74.

Attia, Z. I., Noseworthy, P. A., Lopez-Jimenez, F., Asirvatham,
S. J., Deshmukh, A. J., Gersh, B. J., Carter, R. E., Yao,
X., Rabinstein, A. A., Erickson, B. J., Kapa, S., and Fried-
man, P. A. (2019b). An artificial intelligence-enabled ecg

21

algorithm for the identification of patients with atrial fib-
rillation during sinus rhythm: a retrospective analysis of
outcome prediction. The Lancet, 394(10201):861–867.

Ayano, Y. M., Schwenker, F., Dufera, B. D., and Debelee, T. G.
(2023). Interpretable machine learning techniques in ecg-
based heart disease classification: A systematic review.
Diagnostics, 13(1).

Bozyigit, F., Erdemir, F., Sahin, M., and Kilinc, D. (2020).
Classification of electrocardiogram (ecg) data using deep
learning methods. In 2020 4th International Symposium
on Multidisciplinary Studies and Innovative Technologies
(ISMSIT), pages 1–5.

Buber, E. and Diri, B. (2018). Performance analysis and cpu
vs gpu comparison for deep learning. In 2018 6th Interna-
tional Conference on Control Engineering & Information
Technology (CEIT), pages 1–6.

Cai, W., Chen, Y., Guo, J., Han, B., Shi, Y., Ji, L., Wang, J.,
Zhang, G., and Luo, J. (2020). Accurate detection of atrial
fibrillation from 12-lead ecg using deep neural network.
Computers in Biology and Medicine, 116:103378.

Chattopadhay, A., Sarkar, A., Howlader, P., and Balasubrama-
nian, V. N. (2018). Grad-cam++: Generalized gradient-
based visual explanations for deep convolutional net-
works. In 2018 IEEE Winter Conference on Applications
of Computer Vision (WACV), pages 839–847.

Christ, M., Braun, N., Neuffer, J., and Kempa-Liehr, A. W.
(2018). Time series feature extraction on basis of scalable
hypothesis tests (tsfresh – a python package). Neurocom-
puting, 307:72–77.

Christopoulos, G., Graff-Radford, J., Lopez, C. L., Yao, X., At-
tia, Z. I., Rabinstein, A. A., Petersen, R. C., Knopman,
D. S., Mielke, M. M., Kremers, W., Vemuri, P., Siontis,
K. C., Friedman, P. A., and Noseworthy, P. A. (2020). Arti-
ficial intelligence–electrocardiography to predict incident
atrial fibrillation. Circulation: Arrhythmia and Electro-
physiology, 13(12):e009355.

Clevert, D., Unterthiner, T., and Hochreiter, S. (2016). Fast and
accurate deep network learning by exponential linear units
(elus). In Bengio, Y. and LeCun, Y., editors, 4th Inter-
national Conference on Learning Representations, ICLR
2016, San Juan, Puerto Rico, May 2-4, 2016, Conference
Track Proceedings.

Del Pup, F. and Atzori, M. (2023). Applications of self-
supervised learning to biomedical signals: where are we
now. Authorea Preprints.

Dubatovka, A. and Buhmann, J. M. (2022). Automatic de-
tection of atrial fibrillation from single-lead ecg using
deep learning of the cardiac cycle. BME Frontiers,
2022:9813062.

Faruk, N., Abdulkarim, A., Emmanuel, I., Folawiyo, Y. Y.,
Adewole, K. S., Mojeed, H. A., Oloyede, A. A., Olawoyin,
L. A., Sikiru, I. A., Nehemiah, M., Ya’u Gital, A., Chi-
roma, H., Ogunmodede, J. A., Almutairi, M., and Kat-
ibi, I. A. (2021). A comprehensive survey on low-cost
ecg acquisition systems: Advances on design specifica-
tions, challenges and future direction. Biocybernetics and
Biomedical Engineering, 41(2):474–502.

Gedon, D., Ribeiro, A. H., Wahlström, N., and Schön, T. B.
(2021). First steps towards self-supervised pretraining of
the 12-lead ecg. In 2021 Computing in Cardiology (CinC),
volume 48, pages 1–4.

Gilon, C., Grégoire, J.-M., Mathieu, M., Carlier, S., and
Bersini, H. (2023). Iridia-af, a large paroxysmal
atrial fibrillation long-term electrocardiogram monitoring
database. Scientific Data, 10(1):714.

Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M.,
Ivanov, P. C., Mark, R. G., Mietus, J. E., Moody, G. B.,
Peng, C.-K., and Stanley, H. E. (2000). Physiobank, phys-
iotoolkit, and physionet. Circulation, 101(23):e215–e220.

Goodacre, S. and Irons, R. (2002). ABC of clinical electrocar-
diography: Atrial arrhythmias. BMJ, 324(7337):594–597.

Gruwez, H., Barthels, M., Haemers, P., Verbrugge, F. H.,
Dhont, S., Meekers, E., Wouters, F., Nuyens, D., Pison, L.,
Vandervoort, P., and Pierlet, N. (2023). Detecting parox-
ysmal atrial fibrillation from an electrocardiogram in si-
nus rhythm: External validation of the ai approach. JACC:
Clinical Electrophysiology, 9(8, Part 3):1771–1782.

Gu, M., Zhang, Y., Wen, Y., Ai, G., Zhang, H., Wang, P.,
and Wang, G. (2023). A lightweight convolutional neural
network hardware implementation for wearable heart rate
anomaly detection. Computers in Biology and Medicine,
155:106623.

Gyawali, D. (2023). Comparative analysis of cpu and gpu pro-
filing for deep learning models. ArXiv, abs/2309.02521.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual
learning for image recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 770–778.

Hicks, S. A., Isaksen, J. L., Thambawita, V., Ghouse, J.,
Ahlberg, G., Linneberg, A., Grarup, N., Strümke, I.,
Ellervik, C., Olesen, M. S., Hansen, T., Graff, C., Holstein-
Rathlou, N.-H., Halvorsen, P., Maleckar, M. M., Riegler,
M. A., and Kanters, J. K. (2021). Explaining deep neural
networks for knowledge discovery in electrocardiogram
analysis. Scientific Reports, 11(1):10949.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q.
(2017). Densely connected convolutional networks. In
2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2261–2269.

22

Huang, W., Xue, Y., Hu, L., and Liuli, H. (2020). S-eegnet:
Electroencephalogram signal classification based on a sep-
arable convolution neural network with bilinear interpola-
tion. IEEE Access, 8:131636–131646.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Acceler-
ating deep network training by reducing internal covariate
shift. In Bach, F. and Blei, D., editors, Proceedings of
the 32nd International Conference on Machine Learning,
volume 37 of Proceedings of Machine Learning Research,
pages 448–456, Lille, France. PMLR.

Izenman, A. J. (2008). Linear Discriminant Analysis, pages
237–280. Springer New York, New York, NY.

Jahmunah, V., Ng, E., Tan, R.-S., Oh, S. L., and Acharya, U. R.
(2022). Explainable detection of myocardial infarction us-
ing deep learning models with grad-cam technique on ecg
signals. Computers in Biology and Medicine, 146:105550.

Jang, J.-H., Kim, T. Y., Lim, H.-S., and Yoon, D. (2021). Un-
supervised feature learning for electrocardiogram data us-
ing the convolutional variational autoencoder. PLOS ONE,
16(12):1–16.

Jaworski, M., Duraj, A., and Szczepaniak, P. (2022). Evalua-
tion of deep machine learning methods for analysis of ecg
stream data. Procedia Computer Science, 207:1212–1221.

Jiang, P.-T., Zhang, C.-B., Hou, Q., Cheng, M.-M., and Wei,
Y. (2021). Layercam: Exploring hierarchical class activa-
tion maps for localization. IEEE Transactions on Image
Processing, 30:5875–5888.

Khan, F., Yu, X., Yuan, Z., and Rehman, A. u. (2023). Ecg
classification using 1-d convolutional deep residual neural
network. PLOS ONE, 18(4):1–22.

Kim, J.-K., Jung, S., Park, J., and Han, S. W. (2022). Arrhyth-
mia detection model using modified densenet for compre-
hensible grad-cam visualization. Biomedical Signal Pro-
cessing and Control, 73:103408.

Koles, Z. J., Lazar, M. S., and Zhou, S. Z. (1990). Spatial pat-
terns underlying population differences in the background
eeg. Brain Topography, 2(4):275–284.

Kuznetsov, V. V., Moskalenko, V. A., Gribanov, D. V., and
Zolotykh, N. Y. (2021). Interpretable feature generation
in ecg using a variational autoencoder. Frontiers in Genet-
ics, 12.

Lai, C., Zhou, S., and Trayanova, N. A. (2021). Optimal ecg-
lead selection increases generalizability of deep learning
on ecg abnormality classification. Philosophical Transac-
tions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 379(2212):20200258.

Lawhern, V. J., Solon, A. J., Waytowich, N. R., Gordon,
S. M., Hung, C. P., and Lance, B. J. (2018). Eegnet:
a compact convolutional neural network for eeg-based

brain–computer interfaces. Journal of Neural Engineer-
ing, 15(5):056013.

Liao, L., Li, H., Shang, W., and Ma, L. (2022). An empirical
study of the impact of hyperparameter tuning and model
optimization on the performance properties of deep neural
networks. ACM Trans. Softw. Eng. Methodol., 31(3).

Lima, E. M., Ribeiro, A. H., Paixão, G. M., Ribeiro, M. H.,
Filho, M. M. P., Gomes, P. R., Oliveira, D. M., Sabino,
E. C., Duncan, B. B., Giatti, L., Barreto, S. M., Meira, W.,
Schön, T. B., and Ribeiro, A. L. P. (2021). Deep neural
network estimated electrocardiographic-age as a mortality
predictor. medRxiv.

Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollár, P. (2020).
Focal loss for dense object detection. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 42(2):318–
327.

Liu, H., Zhao, Z., and She, Q. (2021). Self-supervised ecg
pre-training. Biomedical Signal Processing and Control,
70:103010.

Loshchilov, I. and Hutter, F. (2019). Decoupled weight decay
regularization. In International Conference on Learning
Representations.

Luo, P., Wang, X., Shao, W., and Peng, Z. (2019). Towards
understanding regularization in batch normalization. In
International Conference on Learning Representations.

Macfarlane, P. W. and Kennedy, J. (2021). Automated ecg inter-
pretation—a brief history from high expectations to deep-
est networks. Hearts, 2(4):433–448.

Mincholé, A., Camps, J., Lyon, A., and Rodrı́guez, B. (2019).
Machine learning in the electrocardiogram. Journal of
Electrocardiology, 57:S61–S64.

Musa, N., Gital, A. Y., Aljojo, N., Chiroma, H., Adewole, K. S.,
Mojeed, H. A., Faruk, N., Abdulkarim, A., Emmanuel, I.,
Folawiyo, Y. Y., Ogunmodede, J. A., Oloyede, A. A., Ola-
woyin, L. A., Sikiru, I. A., and Katb, I. (2023). A sys-
tematic review and meta-data analysis on the applications
of deep learning in electrocardiogram. Journal of Ambi-
ent Intelligence and Humanized Computing, 14(7):9677–
9750.

Noseworthy, P. A., Attia, Z. I., Brewer, L. C., Hayes, S. N.,
Yao, X., Kapa, S., Friedman, P. A., and Lopez-Jimenez, F.
(2020). Assessing and mitigating bias in medical artificial
intelligence. Circulation: Arrhythmia and Electrophysiol-
ogy, 13(3):e007988.

Petmezas, G., Stefanopoulos, L., Kilintzis, V., Tzavelis, A.,
Rogers, J. A., Katsaggelos, A. K., and Maglaveras, N.
(2022). State-of-the-art deep learning methods on electro-
cardiogram data: Systematic review. JMIR Med Inform,
10(8):e38454.

23

Phukan, N., Manikandan, M. S., and Pachori, R. B. (2023).
Afibri-net: A lightweight convolution neural network
based atrial fibrillation detector. IEEE Transactions on
Circuits and Systems I: Regular Papers, 70(12):4962–
4974.

Qin, Y., Sun, L., Chen, H., Yang, W., Zhang, W.-Q., Fei, J., and
Wang, G. (2023). Mvkt-ecg: Efficient single-lead ecg clas-
sification for multi-label arrhythmia by multi-view knowl-
edge transferring. Computers in Biology and Medicine,
166:107503.

Raghunath, S., Pfeifer, J. M., Ulloa-Cerna, A. E., Nemani,
A., Carbonati, T., Jing, L., vanMaanen, D. P., Hartzel,
D. N., Ruhl, J. A., Lagerman, B. F., Rocha, D. B., Stoudt,
N. J., Schneider, G., Johnson, K. W., Zimmerman, N.,
Leader, J. B., Kirchner, H. L., Griessenauer, C. J., Hafez,
A., Good, C. W., Fornwalt, B. K., and Haggerty, C. M.
(2021). Deep neural networks can predict new-onset atrial
fibrillation from the 12-lead ecg and help identify those
at risk of atrial fibrillation–related stroke. Circulation,
143(13):1287–1298.

Ribeiro, A. H., Paixao, G. M., Lima, E. M., Horta Ribeiro,
M., Pinto Filho, M. M., Gomes, P. R., Oliveira, D. M.,
Meira Jr, W., Schon, T. B., and Ribeiro, A. L. P. (2021).
CODE-15%: a large scale annotated dataset of 12-lead
ECGs.

Ribeiro, A. H., Ribeiro, M. H., Paixão, G. M. M., Oliveira,
D. M., Gomes, P. R., Canazart, J. A., Ferreira, M. P. S.,
Andersson, C. R., Macfarlane, P. W., Meira Jr., W., Schön,
T. B., and Ribeiro, A. L. P. (2020). Automatic diagnosis
of the 12-lead ecg using a deep neural network. Nature
Communications, 11(1):1760.

Riyad, M., Khalil, M., and Adib, A. (2020). MI-EEGNET:
A novel convolutional neural network for motor imagery
classification. J Neurosci Methods, 353:109037.

Romdhane, T. F., Alhichri, H., Ouni, R., and Atri, M. (2020).
Electrocardiogram heartbeat classification based on a deep
convolutional neural network and focal loss. Computers in
Biology and Medicine, 123:103866.

Roots, K., Muhammad, Y., and Muhammad, N. (2020). Fusion
convolutional neural network for cross-subject eeg motor
imagery classification. Computers, 9(3).

Sakr, A. S., Pławiak, P., Tadeusiewicz, R., Pławiak, J., Sakr, M.,
and Hammad, M. (2023). Ecg-covid: An end-to-end deep
model based on electrocardiogram for covid-19 detection.
Information Sciences, 619:324–339.

Sau, A. and Ng, F. S. (2023). –the emerging role of artificial in-
telligence enabled electrocardiograms in healthcare. BMJ
Medicine, 2(1).

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh,
D., and Batra, D. (2020). Grad-cam: Visual explanations

from deep networks via gradient-based localization. Inter-
national Journal of Computer Vision, 128(2):336–359.

Sepahvand, M. and Abdali-Mohammadi, F. (2022). A novel
method for reducing arrhythmia classification from 12-
lead ecg signals to single-lead ecg with minimal loss of
accuracy through teacher-student knowledge distillation.
Information Sciences, 593:64–77.

Sharir, O., Peleg, B., and Shoham, Y. (2020). The cost
of training nlp models: A concise overview. ArXiv,
abs/2004.08900.

Simonyan, K., Vedaldi, A., and Zisserman, A. (2014). Deep
inside convolutional networks: Visualising image classifi-
cation models and saliency maps. In Workshop at Interna-
tional Conference on Learning Representations.

Smilkov, D., Thorat, N., Kim, B., Viégas, F. B., and Watten-
berg, M. (2017). Smoothgrad: removing noise by adding
noise. CoRR, abs/1706.03825.

Somani, S., Russak, A. J., Richter, F., Zhao, S., Vaid, A.,
Chaudhry, F., De Freitas, J. K., Naik, N., Miotto, R., Nad-
karni, G. N., Narula, J., Argulian, E., and Glicksberg, B. S.
(2021). Deep learning and the electrocardiogram: review
of the current state-of-the-art. EP Europace, 23(8):1179–
1191.

Springenberg, J. T., Dosovitskiy, A., Brox, T., and Riedmiller,
M. A. (2015). Striving for simplicity: The all convolu-
tional net. In Bengio, Y. and LeCun, Y., editors, 3rd Inter-
national Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Workshop
Track Proceedings.

Strodthoff, N., Wagner, P., Schaeffter, T., and Samek, W.
(2021). Deep learning for ecg analysis: Benchmarks and
insights from ptb-xl. IEEE Journal of Biomedical and
Health Informatics, 25(5):1519–1528.

Tohyama, T., Ide, T., Ikeda, M., Nagata, T., Tagawa, K., Hirose,
M., Funakoshi, K., Sakamoto, K., Kishimoto, J., Todaka,
K., Nakashima, N., and Tsutsui, H. (2023). Deep learn-
ing of ecg for the prediction of postoperative atrial fibril-
lation. Circulation: Arrhythmia and Electrophysiology,
16(2):e011579.

Tompson, J., Goroshin, R., Jain, A., LeCun, Y., and Bregler, C.
(2015). Efficient object localization using convolutional
networks. In 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 648–656.

Wagner, P., Strodthoff, N., Bousseljot, R.-D., Kreiseler, D.,
Lunze, F. I., Samek, W., and Schaeffter, T. (2020). Ptb-
xl, a large publicly available electrocardiography dataset.
Scientific Data, 7(1):154.

Wagner, P., Strodthoff, N., Bousseljot, R.-D., Samek, W., and
Schaeffter, T. (2022). Ptb-xl, a large publicly available
electrocardiography dataset.

24

Wang, H., Wang, Z., Du, M., Yang, F., Zhang, Z., Ding, S.,
Mardziel, P., and Hu, X. (2020). Score-cam: Score-
weighted visual explanations for convolutional neural net-
works. In 2020 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition Workshops (CVPRW), pages
111–119, Los Alamitos, CA, USA. IEEE Computer Soci-
ety.

Wang, M. (2023). A modified motor imagery classification
method based on eegnet. In Proceedings of the 2022
6th International Conference on Electronic Information
Technology and Computer Engineering, EITCE ’22, page
427–431, New York, NY, USA. Association for Comput-
ing Machinery.

Xiaolin, L., Panicker, R. C., Cardiff, B., and John, D. (2021).
Multistage pruning of cnn based ecg classifiers for edge
devices. In 2021 43rd Annual International Conference
of the IEEE Engineering in Medicine & Biology Society
(EMBC), pages 1965–1968. IEEE.

Xu, W. and Du, S. S. (2023). Over-parameterization exponen-
tially slows down gradient descent for learning a single
neuron. ArXiv, abs/2302.10034.

Zhang, H., Wang, Z., Yu, Y., Yin, H., Chen, C., and Wang, H.
(2022). An improved eegnet for single-trial eeg classifica-
tion in rapid serial visual presentation task. Brain Science
Advances, 8(2):111–126.

25

	Introduction
	Related work
	Interpretability of Deep Learning in ECG Analysis
	Common Model Architectures for ECG Analysis
	Computational Efficiency Optimisation
	Positioning of ECGencode in literature

	ECGencode Feature Encoder
	Compact Convolutional Architecture for Automated ECG Feature Encoding
	Temporal Convolution
	Spatial Convolution
	Feature Convolutions

	ECG Specific Normalisation and Regularisation
	Different Axis Batch Normalisation
	Novel Spatial Gaussian Noise Regularisation

	Computational Efficiency Through Depthwise and Depthwise Separable Convolutions
	Standard 2D Convolution
	Depthwise 2D Convolution
	Depthwise Separable 2D Convolution
	Striding over Pooling

	Controllable and Extendable Feature Complexity
	Parameter-Driven Control of Latent Space Complexity
	Incorporating Advanced Extensions

	ECGencode-Specific Visualisation
	Insights into the Temporal Convolution
	Interpretation of Spatial Convolution
	Utilisation of Conventional Visualisation Techniques

	Evaluation and Results
	Available Data Sets
	PTB-XL Data Set
	CODE-15% Data Set

	Experimental Setup and Evaluation Metrics
	ECGencode Model 1: Binary ECG Classification
	ECGencode Model 2: Multi-Label ECG Classification
	Evaluation Metrics

	Binary ECG Classification Results
	Multi-Label ECG Classification Results
	Computational Efficiency Analysis
	Computational Efficiency of Binary ECG classification models
	Computational Efficiency of Multi-label ECG classification models

	Discussion
	Conclusion

